H. R. Seong et al. / Tetrahedron Letters 45 (2004) 723–727
727
€
2003, 240, 3–15; (d) For
a
benzene-based tripodal
1997, 53, 1647–1654; (c) Nishizawa, S.; Buhlmann, P.;
Xiao, K. P.; Umezawa, Y. Anal. Chim. Acta 1998, 358, 35–
44.
imidazolium receptor for halide recognition, see: Sato,
K.; Arai, S.; Yamagishi, T. Tetrahedron Lett. 1999, 40,
5219–5222.
12. For selected conformational arguments on the benzene-
based tripodal systems, see: (a) Kilway, K. V.; Siegel, J. S.
J. Am. Chem. Soc. 1992, 114, 255–261; (b) Hartshorn, C.
M.; Steel, P. J. Aust. J. Chem. 1995, 48, 1587–1599; (c)
Walsdorff, C.; Saak, W.; Pohl, S. J. Chem. Soc., Dalton
Trans. 1997, 1857–1861; (d) Hoskins, B. F.; Robson, R.;
Slizys, D. A. Angew Chem., Int. Ed. 1997, 36, 2752–2754.
13. (a) Christensen, J. J.; Wrathall, D. P.; Oscarson, J. O.;
Izatt, R. M. Anal. Chem. 1968, 40, 1713–1717; (b)
Smithrud, D. B.; Wyman, T. B.; Diederich, F. J. Am.
Chem. Soc. 1991, 113, 5420–5426.
7. Our own works on benzene-based tripodal receptors, see:
(a) Ahn, K. H.; Kim, S.-G.; Jung, J.; Kim, K.-H.; Kim, J.;
Chin, J.; Kim, K. Chem. Lett. 2000, 170–171; (b) Kim,
S.-G.; Ahn, K. H. Chem. Eur. J. 2000, 6, 3399–3403; (c)
Kim, S.-G.; Kim, K.-H.; Jung, J.; Shin, S. K.; Ahn, K. H.
J. Am. Chem. Soc. 2002, 124, 591–596; (d) Choi, H.-J.;
Park, Y. S.; Yun, S. H.; Kim, H. S.; Cho, C. S.; Ko, K.;
Ahn, K. H. Org. Lett. 2002, 4, 795–798; (e) Kim, Y. K.;
Ha, J.; Cha, G. S.; Ahn, K. H. Bull. Korean Chem. Soc.
2002, 23, 1420–1424; (f) Ahn, K. H.; Ku, H.; Kim, Y.;
Kim, S.-G.; Kim, Y. K.; Son, H. S.; Ku, J. K. Org. Lett.
2003, 5, 1419–1422; (g) Kim, S.-G.; Kim, K.-H.; Kim, Y.
K.; Shin, S. K.; Ahn, K. H. J. Am. Chem. Soc. 2003, 125,
13819–13824.
8. For luminescent sensors based on thiouronium and
thiourea receptors, see: (a) Kubo, Y.; Tsukahara, M.;
Ishihara, S.; Tokita, S. Chem. Commun. 2000, 653–654; (b)
Gunnlaugsson, R.; Davis, A. P.; Glynn, M. Chem.
Commun. 2001, 2556–2557; (c) Sasaki, S.; Citterio, D.;
Ozawa, S.; Suzuki, K. J. Chem. Soc., Perkin Trans. 2 2001,
2309–2313; (d) For a recent luminescent sensor for a
sulfate ion, see: Prohens, R.; Martorell, G.; Ballester, P.;
Costa, A. Chem. Commun. 2001, 1456–1457; (e) Nishiz-
awa, S.; Cui, Y.-Y.; Minagawa, M.; Morita, K.; Kato, Y.;
Taniguchi, S.; Kato, R.; Teramae, N. J. Chem. Soc.,
Perkin Trans. 2 2002, 866–870; (f) Kubo, Y.; Ishihara, S.;
Tsukahara, M.; Tokita, S. J. Chem. Soc., Perkin Trans. 2
2002, 1455–1460.
9. Selected spectroscopic data: 1a: 1H NMR (CD3OD,
300 MHz) d 9.7–8.9 (br m, 6H, –NH), 7.6–7.4 (m, 15H),
4.7–4.5 (m, 12H, –CH2–), 3.2 and 3.0 (br s, 9H, –NCH3),
2.2 (br s, 9H); 13C NMR (CD3OD, 75 MHz) d 165.8 and
165.6, 139.1, 134.8, 130.3, 129.2, 128.9, 128.2, 44.4 and
44.0, 36.0, 31.8 and 31.4, 16.3. 1b: 1H NMR (CD3OD,
300 MHz) d 9.7–8.9 (br m, 6H, –NH), 8.1–7.5 (m, 21H),
4.94 and 4.89 (s, 6H, –CH2N–), 4.58 and 4.43 (m, 6H,
–SCH2–), 3.2 and 3.0 (br s, 9H, –NCH3), 2.2–1.9 (m, 9H);
13C NMR (CD3OD, 75 MHz) d 165.8 and 165.5, 138.9,
132.8, 132.5, 130.1, 129.0, 128.7, 128.0, 127.7, 126.7, 126.6,
44.4 and 43.7, 36.3 and 35.8, 31.9 and 31.4, 15.9. 8: 1H
NMR (CD3OD, 300 MHz) d 7.36 and 7.24 (br s, 6H,
–NH), 4.57 (d, J ¼ 2:4 Hz, 6H), 2.96 (d, J ¼ 2:4 Hz, 9H),
2.43 (s, 9H, –ArCH3); 13C NMR (CD3OD, 75 MHz) d
183.0, 136.7, 132.8, 43.5, 30.7, 15.0.
14. A typical ITC experimental. A solution of (Me4Nþ)2SO4
2ꢁ
in methanol (2.0 mM) was introduced by 45 lL injections,
in total 200 lL, into a methanol solution of BTT 1a
(1.5 mL, 0.1 mM) in a calorimetry cell (Microcal Inc.). The
solution was kept at an operating temperature of 303 K.
Analysis and curve fitting using the software OriginTM
afforded the thermodynamic data.
15. The raw data in terms of microcalories/second plotted
against time cross over the zero level, owing to traces of
water remaining in the guest salt. Attempts to remove
water completely from the guest was not successful. All the
sample preparations were carried out in a glove box under
nitrogen.
16. The Ôone set of sitesÕ model applies for any number of sites
n if all sites have the same K and DH.
17. We prepared (n-Bu4Nþ)3PO4 by treatment of equimolar
3ꢁ
amounts of n-Bu4NOH and H3PO4 in methanol. We
found that attempted purification of the resulting salt by
recrystallization in various solvents (MeOH–Et2O,
MeOH–EtOAc, MeOH–CHCl3, MeOH–benzene, etc.)
was not reproducible or did not provide the desired salt.
The chemical entity of the salt was monitored by
volumetric titration. We found that mixing of equimolar
amounts of the reagents and subsequent evaporation of
the solvent under vacuum, without recrystallization, gave
the salt suitable for the ITC titrations.
18. Nonlinear curve fitting under conditions of two non-
identical and independent binding sites or two identical
and dependent sites model did not give better fit. Thus, the
DG0 value can be used only as an estimation.
ꢁ
19. The distance between the two oxygens of PhSO3 is
ꢁ
ꢁ
2.42 A, while that of PhP(OH)O2 is 2.55 A, see: (a) Kelly,
ꢁ
T. R.; Kim, M. H. J. Am. Chem. Soc. 1994, 116, 7072–
2ꢁ
3ꢁ
7078; (b) The thermochemical radii of SO4 and PO4
ꢁ
are 2.14 and 2.27 A, respectively, see: Solıs-Correa, H. J.
ꢀ
10. Van der Made, A. W.; Van der Made, R. H. J. Org. Chem.
1993, 58, 1262–1263.
Chem. Educ. 1987, 64, 942–943.
€
11. (a) Nishizawa, S.; Buhlmann, P.; Iwao, M.; Umezawa, Y.
Tetrahedron Lett. 1995, 36, 6483–6486; (b) Buhlmann, P.;
20. (a) Hoffmann, R. W.; Hettche, F.; Harms, K. Chem.
Commun. 2002, 782–783; (b) Hettche, F.; Hoffman, R. W.
New J. Chem. 2003, 27, 172–177.
€
Nishizawa, S.; Xiao, K. P.; Umezawa, Y. Tetrahedron