imine intermediate A subsequently undergoes annulation via the addition of a C=N bond to the C-C triple bond to afford the required
compound isoquinoline.
NH
O
NH
NH3
B
A
1a
OMe
OMe
OMe
N
OMe
2a
Scheme 4 Plausible reaction pathway.
In summary, an environmental-friendly, catalyst-free method has been explored for the preparation of isoquinolines. A series of
isoquinolines with different substituent was obtained with moderate to good yields. This method has several advantages over other
reported methods: (a) the reaction works smoothly without any catalyst and additives; (b) a renewable solvent, such as water, cab be used;
(c) it has high atom economy with only one mole of water loss; and (d) there are no toxic byproducts.
Acknowledgments
The generous financial support from the National Natural Science Foundation of China (Nos. 51773057, 21571058 and
21877034), the Hunan Provincial Education Department Scientific Research Fund (Nos. 18B221 and 18A192) are gratefully
acknowledged.
Supplementary data
Supplementary data associated with this article can be found, in the online version, at
References
[1] (a) B. M. Trost, Science 254 (1991) 1471;
(b) B. M. Trost, Angew. Chem. Int. Ed. 34 (1995) 259;
(c) P. J. Parsons, C. S. Penkett, A. J. Shell, Chem. Rev. 96 (1996) 195;
(d) J. Guo, H. Miao, Y. Zhao, X. Bai, Y. Zhu, Q. Wang, Z. Bu, Chem. Commun. 55 (2019) 5207.
[2] (a) M. A. P. Martins, C. P. Frizzo, D. N. Moreira, N. Zanatta, H. G. Bonacorso, Chem. Rev. 108 (2008) 2015;
(b) L. C. Feng, Y. W. Sun, W. J. Tang, L. J. Xu, K. L. Lam, Z. Zhou, Green Chem. 12 (2010) 949;
(c) S. Jin, J. Guo, D. Fang, Y. Huang, Q. Wang, Z. Bu, Adv. Synth. Catal. 361 (2019) 456.
[3] (a) G. P. Lu, C. Cai, Catal. Commun. 11 (2010) 745;
(b) A. Chanda, V. V. Fokin, Chem. Rev. 109 (2009) 725.
[4] (a) T. H. Babu, S. Pawar, D. Muralidharan, P. T. Perumal, Synlett 2010, 2125;
(b) H. Firouzabadi, N. Iranpoor, M. Gholinejad, Adv. Synth. Catal. 352 (2010) 119.
[5] (a) R. He, Z. Huang, Q. Zheng, C. Wang, Angew. Chem. Int. Ed. 53 (2014) 4950;
(b) J. Li, M. T ang, L. Zang, X. Zhang, Z. Zhang, L. Ackermann, Org. Lett. 18 (2016) 2742;
(c) G. Qiu, J. Wu, Chem. Rec. 16 (2016) 19;
(d) H. Mora-Radó, L. Bialy, W. Czechtizky, M. Méndez, J. P. A. Harrity, Angew. Chem., Int. Ed. 55 (2016) 5834;
(e) A. H. Cherney, N. T. Kadunce, S. E. Reisman. Chem. Rev. 115 (2015) 9587;
(f) R. Liu, M. Li, W. Xie, H. Zhou, Y. Zhang, G. Qiu, J. Org. Chem. 84 (2019) 11763.
[6] (a) J. P. Wolfe, R. A. Singer, B. H. Yang, S. L. Buchwald, J. Am. Chem. Soc. 121 (1999) 9550;
(b) T. Kubo, G. M. Scheutz, T. S. Latty, B. S. Sumerlin, Chem. Commun. 55 (2019) 5655.
[7] (a) V. B. Phapale, D. J. Cárdenas, Chem. Soc. Rev. 38 (2009) 1598;
(b) C. Han, S. L. Buchwald, J. Am. Chem. Soc. 131 (2009) 7532.
[8] (a) M. S. Eno, A. Lu, J. P. Morken, J. Am. Chem. Soc. 138 (2016) 7824;
(b) P. P. Chen, E. L. Lucas, M. A. Greene, S. Q. Zhang, E. J. Tollefson, L. W. Erickson, B. L. H. Taylor, E. R. Jarvo, X. Hong, J. Am. Chem. Soc. 141 (2019) 5835.
[9] (a) D. Y. Wang, M. Kawahata, Z. K. Yang, K. Miyamoto, S. Komagawa, K. Yamaguchi, C. Wang, M. Uchiyama, Nat. commun. 7 (2016) 12937;
(b) M. B. Halle, T. Yudhistira, W. H. Lee, S. V. Mulay, D. G. Churchill, Org. Lett. 20 (2018) 3557.
[10] (a) S. Yamada, K. Murakami, K. Itami, Org. Lett. 18 (2016) 2415;
(b) G. Wu, J. Zhou, M. Zhang, P. Hu and W. Su, Chem. Commun. 48 (2012) 8964;
(c) T. Guo, Y. Liu, Y.-H. Zhao, P.-K. Zhang, S.-L. Han, H.-M. Liu, Tetrahedron Lett. 57 (2016) 3920;
(d) T. Guo, X.-N. Wei, H.-Y. Wang, Y.-L. Zhu, Y.-H. Zhao, Y.-C. Ma, Org. Biomol. Chem. 15 (2017) 9455;
(e) T. Guo, Y. Liu, Y.-H. Zhao, P.-K. Zhang, S.-L. Han, H.-M. Liu, Tetrahedron Lett., 57 (2016) 4629;
(f) T. Guo, J.-J. Liang, S. Yang, H. Chen, Y.-N. Fu, S.-L. Han, Y.-H. Zhao, Org. Biomol. Chem. 16 (2018) 6039;
(g) T. Guo, X.-N. Wei, Y. Liu, P.-K. Zhang, Y.-H. Zhao, Org. Chem. Front. 6 (2019) 1414.
[11] (a) Y. Yang, J. Lan, J. You, Chem. Rev. 117 (2017) 8787;
(b) C. Liu, J. Yuan, M. Gao, S. Tang, W. Li, R. Shi, A. Lei, Chem. Rev. 115 (2015) 12138.
[12] (a) Y.-H. Zhao, Y. Li, M. Luo, Z. Tang, K. Deng, Synlett. 27 (2016) 2597;
(b) Y.-H. Zhao, Y. Li, T. Guo, Z. Tang, K. Deng, G. Zhao, Synth. Commun. 46 (2016) 355;
(c) Y.-H. Zhao, Y. Luo, Y. Zhu, H. Wang, H. Zhou, H. Tan, Z. Zhou, Y.-C. Ma, W. Xie, Z. Tang, Synlett 29 (2018) 773;
(d) Y,-H. Zhao, H.-W. Liu, Synthetic Commun. 2014,44, 1012.
[13] (a) S. M. Rida, S. A. M. El-Hawash, H. T. Y. Fahmy, A. A. Hazzaa, M. M. M. El-Meligy, Arch. Pharmacal Res. 29 (2006) 826;
(b) L. W. Deady, T. Rodemann, G. J. Finlay, B. C. Baguley, W. A. Denny, Anti-Cancer Drug Des. 15 (2001) 339;
(c) D. B. Khadka, W.-J. Cho, Bioorg. Med. Chem. 19 (2011) 724;