Communication
tion reaction to 2-substituted 1,2,3-triazoles, see: E. Decuypere, S. Ber-
nard, M. Feng, K. Porte, M. Riomet, P. Thuery, D. Audisio, F. Taran, ACS
Catal. 2018, 8, 11882; b) For a recent review on N–N bond formation
see: Q. Guo, Z. Lu, Synthesis 2017, 49, 3835.
a) C. D. Cox, M. J. Breslin, D. B. Whitman, J. D. Schreier, G. B. McGaughey,
M. J. Bogusky, A. J. Roecker, S. P. Mercer, R. A. Bednar, W. Lemaire, J. G.
Bruno, D. R. Reiss, C. M. Harrell, K. L. Murphy, S. L. Garson, S. M. Doran,
T. Prueksaritanont, W. B. Anderson, C. Tang, S. Roller, T. D. Cabalu, D. Cui,
G. D. Hartman, S. D. Young, K. S. Koblan, C. J. Winrow, J. J. Renger, P.
Coleman, J. Med. Chem. 2010, 53, 5320; b) Suvorexant: the first global
approval: L. P. H. Yang, Drugs 2014, 74, 1817.
which readily tautomerizes to 11b and subsequent SN2 dis-
placement leads to triazole 5. A preliminary computational DFT
study on the reaction pathway of 4a to 5a proposed that the
intramolecular SN2 reaction of the deprotonated substrate 4a
to give 5a has a transition state of 15.4 kcal/mol and that the
reaction is very exothermic (–56.9 kcal/mol). Opposingly, intra-
molecular SN2 cyclization of non-deprotonated 4a has unfavor-
able reaction energetics and no feasible transition state for an
alternative SN1 pathway could be found (see supporting infor-
mation for more details on the computational study).
In conclusion, we have developed an efficient synthesis of 2-
aryl-1,2,3-triazoles based on an intramolecular N–N bond forma-
tion presumably via SN2 displacement of a hydrazonium species
in the presence of a base. The methodology takes advantage
of the readily available starting materials, milder reaction condi-
tions and complete control of the regioselectivity. The simplicity
of the reaction sequence, wide substrate scope and high effi-
ciency of the N,N-bond formation offer advantages over exist-
ing methods reported in the literature. The method demon-
strated herein provides an expedited and module synthesis of
a wide variety of 2-aryl-1,2,3-triazoles.
[4]
[5]
M. A. Letavic, P. Bonaventure, N. Carrutheers, C. Dugovic, T. Koudriakova,
T. B. Lord, T. W. Lovenberg, K. S. Ly, N. S. Mani, D. Nepomuceno, D. J.
Pippel, M. Rizzolio, J. E. Shelton, C. R. Shah, B. T. Shireman, L. K. Young,
S. Yun, J. Med. Chem. 2015, 58, 5620.
[6] For Cu-catalyzed coupling see: a) Y. Liu, W. Yan, Y. Chen, J. Petersen, X.
Shi, Org. Lett. 2008, 10, 5389; b) C. A. Baxter, E. Cleator, K. M. J. Brands,
J. S. Edwards, R. A. Reamer, F. J. Sheen, G. W. Stewart, N. A. Strotman,
D. J. Wallace, Org. Process Res. Dev. 2011, 15, 367.
[7]
For Pd-catalyzed coupling see: S. Ueda, M. Su, L. Buchwald, Angew. Chem.
Int. Ed. 2011, 50, 8944; Angew. Chem. 2011, 123, 9106.
[8]
For SNAr displacement reaction see: a) X.-J. Wang, L. Zhang, H. Lee, N.
Haddad, D. Krishnamurthy, C. H. Senanayake, Org. Lett. 2009, 11, 5026;
b) X.-J. Wang, K. Sidhu, L. Zhang, S. Campbell, N. Haddad, D. C. Reeves,
D. Krishnamurthy, C. H. Senanayake, Org. Lett. 2009, 11, 5490; c) X.-J.
Wang, L. Zhang, D. Krishnamurthy, C. H. Senanayake, P. Wipf, Org. Lett.
2010, 12, 4632; d) S. Roshandel, M. J. Lunn, G. Rasul, D. S. M. Ravinson,
S. C. Suri, G. K. S. Prakash, Org. Lett. 2019, 21, 6255.
a) M. Begtrup, J. Molm, J. Chem. Soc., Perkin Trans. 1 1981, 503; b) The
following transformation was scaled up to 2 kg scale to give triazole 5b
in 54 % yield. However, removal of Cu residue and disposal of Zn dust
during work up were capricious.
Supporting Information (see footnote on the first page of this
article): The supporting information is available free of charge.
Copies of 1H and 13C NMR spectra of new compounds are included
in the SI.
[9]
Notes
The authors declare no competing financial interest.
Acknowledgments
We would like to acknowledge Mrs. Huawei Ma and Miss. Huan
Dong at Porton R&D Center (Shanghai, China P. R.) for the ana-
lytical support and Dr Chris Teleha of Janssen R&D (Spring-
house, PA, USA) for helpful discussion during the preparation
of this manuscript.
[10]
[11]
[12]
a) W.-J. Tang, Y.-Z. Hu, Synth. Commun. 2006, 36, 2461; b) M. M. Guru, T.
Punniyamurthy, J. Org. Chem. 2012, 77, 5063; c) R. M. Hann, C. S. Hudson,
J. Am. Chem. Soc. 1944, 66, 735.
I. K. Boddy, G. G. Briggs, R. P. Harrison, T. H. Jones, M. J. O'Mahony, I. D.
Marlow, B. G. Roberts, J. Willis, R. Bardsley, J. Reid, J. Pestic. Sci. 1996, 48,
189.
The cyclization of hydrazonohydrazonium salt 5i in the presence of
KHCO3 was less clean than that with K2CO3, and resulted only in 56 %
isolated yield.
A.-O. Fatima, A. Khalik, M. Mohanned, A.-E. Adel, M. E. Hilmy, Synthesis
1997, 91.
Keywords: Intramolecular · N–N bond formation · 2-Aryl
1,2,3-triazole · SN2 Displacement · Reaction mechanisms
[1] a) H. Wamhoff, In Comprehensive Heterocyclic Chemistry (Eds.: A. R. Kar-
tritzky, C. W. Rees); Pergamon: Oxford, 1984; Vol. 5, p. 669; b) H. Dehne,
In Methoden der Organischen Chemie (Houben-Weyl) (Ed.: E. Schumann),
Thieme: Stuttgart, 1994; Vol. E8d, pp. 305; c) H. C. Kolb, K. B. Sharpless,
Drug Discovery Today 2003, 8, 1128.
[2] a) V. V. Rostovtsev, L. G. Green, V. V. Fokin, K. B. Sharpless, Angew. Chem.
Int. Ed. 2002, 41, 2596; Angew. Chem. 2002, 114, 2708; b) C. W. Tornoe,
C. Christensen, M. Meldal, J. Org. Chem. 2002, 67, 3057.
[13]
[14]
For a base-promoted synthesis of N-substituted 1,2,3-triazoles via en-
aminone-azide cycloaddition, see: J.-P. Wan, S. Cao, Y. Liu, Org. Lett. 2016,
18, 6034.
[3] a) Very recently, Taran and co-workers reported an interesting methodol-
ogy featuring a copper-catalyzed aza-iminosydnone-alkyne cycloaddi-
Received: October 15, 2019
Eur. J. Org. Chem. 0000, 0–0
4
© 0000 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim