J.-C. Caille et al. / Tetrahedron Letters 45 (2004) 863–865
865
HO
PhS
O
1. PhSCH2CO2H (1.2 equiv.)
OH
O
LDA (2.4 equiv.), THF, 0 °C, 1 h
OCPh3
OCPh3
2. HCl
3. Extraction into toluene
2
7
toluene
reflux, 2 h
OCPh3
OCPh3
O
O
MTO (3 mol%), UHP, CH2Cl2, rt, 3 h
O
O
Ph
S
SPh
O
9
8
1. NaH (1.0 equiv.), THF, 0 °C
2. Selectfluor (1.2 equiv.), DMF, 30 min, then rt, 3 h
OCPh3
OCPh3
OCPh3
O
NaHCO3
O
F
O
O
O
H2, Pd/C
rt, 15 h
O
toluene, reflux,
10 min
S
F
Ph
F
O
6
11
10
Scheme 2.
Driscoll, J. S. Biochem. Pharmacol. 1987, 36, 2719; (c)
Marquez, V. E.; Tseng, C. K.-H.; Mitsuya, H.; Aoki, S.;
Kelly, J. A.; Ford, H., Jr.; Roth, J. S.; Broder, S.; Johns,
D. G.; Driscoll, J. S. J. Med. Chem. 1990, 33, 978.
septum and a nitrogen inlet was added sodium hydride
(60% in mineral oil, 0.5 g, 12.4 mmol) followed by dry
THF (20 mL).The suspension was cooled to 0 ꢁC. A
solution of lactone 9 (4.0 g, 8.2 mmol) in dry THF
(40 mL) was then added via a syringe over 10 min. The
resulting mixture was stirred at 0 ꢁC for 1 h then at room
temperature for 1/2 h. The color had meanwhile turned
from light yellow to orange to yellow. It was then
transferred in portions via a cannula over 10 min to a
cooled (ice bath) solution of Selectfluor (2.84 g,
8.7 mmol) in dry DMF. When the addition was com-
pleted, the solution was stirred at room temperature for
3 h. It was then poured into a 500 mL separating funnel
containing aqueous saturated ammonium chloride
(200 mL) and extracted with ether (2 · 150 mL). The
combined ethereal extracts were washed with water
(6 · 150 mL), dried over magnesium sulfate, filtered, and
concentrated at reduced pressure to yield the fluorinated
lactone 10, a white foam (3.8 g), which was used without
purification. The 300 MHz NMR spectrum measured
immediately after completion of the reaction workup
revealed the presence of a small amount of starting
material, which was not removed prior to the next step.
The NMR spectrum measured 24 h later revealed the
presence of a new component, indicating that elimina-
tion to form unsaturated lactone 10 was already taking
place to a small extent.
2. For accounts of earlier synthetic approaches to b-FddA,
see Ref. 1 and: (a) Herdewijn, P.; Pauwels, R.; Baba, M.;
Balzarini, J.; De Clercq, E. J. Med. Chem. 1987, 30, 2131;
(b) Marquez, V. E.; Tseng, C. K.-H.; Misty, H.; Okay, S.;
Kelly, J. A.; Ford, H., Jr.; Roth, J. S.; Johns, D. G.;
Driscoll, J. S. J. Med. Chem. 1990, 33, 978; (c) Shiragami,
H.; Tanaka, Y.; Uchida, Y.; Iwagami, H.; Isawa, K.;
Yukawa, T. Nucleos. Nucleot. 1992, 11, 391; (d) Siddiqui,
M. A.; Marquez, V. E.; Driscoll, J. S.; Barchi, J. J.
Tetrahedron Lett. 1994, 35, 3263; (e) Takamatsu, S.;
Maruyama, T.; Katayama, S.; Hirose, N.; Naito, M.;
Izawa, K. Tetrahedron Lett. 2001, 42, 2325; (f) Okabe, M.;
Sun, R.-C.; Zenchoff, G. B. J. Org. Chem. 1991, 56, 4392;
(g) Wysocki, R. J., Jr.; Siddiqui, M. A.; Barchi, J. J., Jr.;
Driscoll, J. S.; Marquez, V. E. Synthesis 1991, 1005; (h)
Jin, F.; Wang, D.; Confalone, P. N.; Pierce, M. E.; Wang,
Z.; Xu, G.; Choudhury, A.; Nguyen, D. D. Tetrahedron
Lett. 2001, 42, 4787.
3. Choudhury, A.; Jin, F.; Wang, Z.; Xu, G.; Nguyen, D.;
Castro, J.; Pierce, M. E.; Confalone, P. N. Tetrahedron
Lett. 2003, 44, 247.
4. Siddiqui, M. A.; Driscoll, J. S.; Marquez, V. E. Tetrahe-
dron Lett. 1998, 39, 1657.
5. (a) Van Zyl, G.; Zuidema, G. D.; Zack, J. F.; Kroman, P.
B. J. Am. Chem. Soc. 1953, 75, 5002; (b) Chatterjee, A.;
Banerjee, D.; Banerjee, B.; Mallik, R. Tetrahedron 1983,
18, 2965; (c) Chatterjee, A.; Banerjee, D.; Mallik, R.
Tetrahedron 1983, 18, 2965.
References and notes
6. Takano, S.; Tanaka, M.; Seo, K.; Hirama, M.; Ogosa-
wara, K. J. Org. Chem. 1985, 50, 931.
7. The hydrogenation of a similar fluorobutenolide, which
1. For the background to the discovery of this active
compound see: (a) Graul, A.; Silvestre, J.; Castaner, J.
Drugs Future 1998, 23, 1176; (b) Marquez, V. E.; Tseng, C.
K.-H.; Kelly, J. A.; Mitsuya, H.; Broder, S.; Roth, J. S.;
had been prepared from D-mannose, has been des-
cribed by Patrick, T. B.; Wei, Y. J. Fluorine Chem. 1998,
90, 53.