Scheme 1
Scheme 2. Preparation of Ynamides of Type Ca
1-ones of type A′ that proceeds from ynamides of type C
and arylboronic acids, which relies on Pd(0)-catalyzed
Heck-Suzuki-Miyaura domino reactions for success
(Scheme 1).
To investigate the feasibility of this Pd(0)-catalyzed
process, several ynamides of type C were prepared from
2-iodobenzoic acid 1. Thus, coupling with benzylamine,
2-bromobenzylamine, and allylamine afforded the corre-
sponding 2-iodobenzamides 2a (60%), 2b (81%), 2c (73%),
respectively. Their conversion to ynamides was achieved by
formation of the potassium amides (KHMDS, toluene, rt)
and condensation with alkynyliodonium salt 315 to afford
compounds 4a (48%), 4b (72%), and 4c (63%), respectively,
in acceptable yields.16 Subsequent desilylation using TBAF
in THF finally provided 5a (96%), 5b (79%), and 5c (85%),
respectively. A structurally related ynamide 5d possessing
a Reagents and conditions: (a) R1NH2, EDCI, cat. DMAP, Et3N,
CH2Cl2, rt; (b) KHMDS, 3, toluene, rt; (c) TBAF, THF, rt.
a pyridine ring was also prepared from the readily available
2-bromonicotinic acid 617 and allylamine according to a
similar strategy (28% overall yield) (Scheme 2).
Since the planned strategy toward 3-(arylmethylene)-
isoindolin-1-ones of type A′ involved two different Pd(0)-
catalyzed steps, it was of interest to initially examine the
feasibility of the Heck reaction. Thus, ynamides 5b and 5c
(Scheme 3) were treated with a catalytic amount of Pd(OAc)2
(4) (a) Gai, X.; Grigg, R.; Khamnaen, T.; Rajviroongit, S.; Sridharan,
V.; Zhang, L.; Collard, S.; Keep, A. Tetrahedron Lett. 2003, 44, 7441-
7443. (b) Cho, C. S.; Shim, H. S.; Choi, H.-J.; Kim, T.-J.; Shim, S. C.
Synth. Commun. 2002, 32, 1821-1827.
(5) (a) Kundu, N. G.; Khan, M. W.; Mukhopadhyay, R. Tetrahedron
1999, 55, 12361-12376. (b) Sashida, H.; Kawamukai, A. Synthesis 1999,
1145-1148. (c) Kundu, N. G.; Khan, M. W. Tetrahedron Lett. 1997, 38,
6937-6940. (d) Khan, M. W.; Kundu, N. G. Synlett 1997, 1435-1437.
(6) (a) Rys, V.; Couture, A.; Deniau, E.; Grandclaudon, P. Tetrahedron
2003, 59, 6615-6619. (b) Couture, A.; Deniau, E.; Grandclaudon, P.;
Hoarau, C.; Rys, V. Tetrahedron Lett. 2002, 43, 2207-2210. (c) Couture,
A.; Deniau, E.; Grandclaudon, P.; Rybalko-Rosen, H.; Le´once, S.; Pfeiffer,
B.; Renard, P. Bioorg. Med. Chem. Lett. 2002, 12, 3557-3559. (d) Couture,
A.; Deniau, E.; Grandclaudon, P.; Hoarau, C. Tetrahedron 2000, 56, 1491-
1499.
Scheme 3
(7) For a review, see: Zificsak, C. A.; Mulder, J. A.; Hsung, R. P.;
Rameshkumar, C.; Wei, L.-L. Tetrahedron 2001, 57, 7575-7606.
(8) (a) Marion, F.; Coulomb, J.; Courillon, C.; Fensterbank, L.; Malacria,
M. Org. Lett. 2004, 6, 1151-1153. (b) Shen, L.; Hsung, R. P. Tetrahedron
Lett. 2003, 44, 9353-9358. (c) Witulski, B.; Lumtscher, J.; Bergstra¨âer,
U. Synlett 2003, 708-710. (d) Witulski, B.; Alayrac, C. Angew. Chem.,
Int. Ed. 2002, 41, 3281-3284.
(5 mol %) and PPh3 (10 mol %) in DMF at 80 °C, and to
regenerate the Pd(0) catalyst from the intermediate σ-vinyl-
palladium complexes of type D, the reaction was carried out
in the presence of ammonium formate (1.5 equiv).18 Under
these conditions, the desired 3-methyleneisoindolin-1-ones
7 and 84b were cleanly generated in 56% and 62%
yields, respectively. Worthy of note is the fact that the
presence of an arylbromide in substrate 5b did not alter the
(9) (a) Huang, J.; Xiong, H.; Hsung, R. P.; Rameshkumar, C.; Mulder,
J. A.; Grebe, T. P. Org. Lett. 2002, 4, 2417-2420. (b) Saito, N.; Sato, Y.;
Mori, M. Org. Lett. 2002, 4, 803-805.
(10) (a) Frederick, M. O.; Hsung, R. P.; Lambeth, R. H.; Mulder, J. A.;
Tracey, M. R. Org. Lett. 2003, 5, 2663-2666. (b) Mulder, J. A.; Hsung,
R. P.; Frederick, M. O.; Tracey, M. R.; Zificsak, C. Org. Lett. 2002, 4,
1383-1386.
(11) (a) Hirano, S.; Tanaka, R.; Urabe, H.; Sato, F. Org. Lett. 2004, 6,
727-729. (b) Tanaka, R.; Hirano, S.; Urabe, H.; Sato, F. Org. Lett. 2003,
5, 67-70.
(12) Ynamides have been used as partners in radical cascades leading
to nitrogen heterocycles: Marion, F.; Courillon, C.; Malacria, M. Org. Lett.
2003, 5, 5095-5097.
(13) (a) Mulder, J. A.; Kurtz, K. C. M.; Hsung, R. P.; Coverdale, H.;
Frederick, M. O.; Shen, L.; Zificsak, C. A. Org. Lett. 2003, 5, 1547-1550.
(b) Witulski, B.; Buschmann, N.; Bergstra¨âer, U. Tetrahedron 2000, 56,
8473-8480.
(14) (a) Naud, S.; Cintrat, J.-C. Synthesis 2003, 1391-1397. (b) Minie`re,
S.; Cintrat, J.-C. Synthesis 2001, 705-707.
(15) Kitamura, T.; Kotani, M.; Fujiwara, Y. Synthesis 1998, 1416-1418.
(16) For an account on the synthesis of ynamides, see: Mulder, J. A.;
Kurtz, K. C. M.; Hsung, R. P. Synlett 2003, 1379-1390 and references
therein.
(17) Meier, P.; Legraverant, S.; Mu¨ller, S.; Schaub, J. Synthesis 2003,
551-554.
(18) For related Heck-cross-coupling domino reactions with alkynes,
see: (a) Min, S.-H.; Pang, S.-J.; Cho, C.-G. Tetrahedron Lett. 2003, 44,
4439-4442. (b) Oh, C. H.; Lim, Y. M. Tetrahedron Lett. 2003, 44, 267-
270. (c) Wang, R.-T.; Chou, F.-L.; Luo, F.-T. J. Org. Chem. 1990, 55,
4846-4849. (d) Grigg, R. J. Heterocycl. Chem. 1994, 31, 631-639 and
references therein. (e) Negishi, E.-I.; Noda, Y.; Lamaty, F.; Vawter, E. J.
Tetrahedron Lett. 1990, 31, 4393-4396. (f) Grigg, R.; Santhakumar, V.;
Sridharan, V.; Stevenson, P.; Teasdale, A.; Thornton-Pett, M.; Worakun,
T. Tetrahedron 1991, 47, 9703-9720. (g) Burns, B.; Grigg, R.; Sridharan,
V.; Stevenson, P.; Sukirthalingam, S.; Worakun, T. Tetrahedron Lett. 1989,
30, 1135-1138.
2512
Org. Lett., Vol. 6, No. 15, 2004