J. Am. Chem. Soc., 2011, 133, 286; A. M. Pujol, C. Gateau, C. Lebrun
and P. Delangle, Chem.–Eur. J., 2011, 17, 4418.
FLWINLAB 2.0. The spectra were recorded in a 1 cm path
length quartz luminescence cell at 25 °C, by exciting the sample
at 280 nm and recording the emission with maximum at 350 nm
(tryptophan fluorescence), 545 nm (Tb-centred luminescence) or
618 nm (Eu-centred luminescence). For fluorescence measure-
ments, excitation slit: 3.0 nm and emission slit: 8.0 nm were
applied. The terbium and europium emission spectra were
recorded after 0.05 ms delay, with gate time/excitation slit/emis-
sion slit: 1 ms/10 nm/5 nm and 0.5 ms/10 nm/15 nm for Tb3+
and Eu3+, respectively. The 430 nm cut-off filter was used
during all tryptophan-sensitized luminescence measurements.
The competition titrations were performed with delays chosen
to maximize the differences in Tb emission intensities of the two
complexes (Fig. S3–S4†). The experimental data were fitted with
fixed values of the conditional stability constant of the reference
peptide and the ratio of the luminescence intensities measured in
the same conditions.
3 K. N. Allen and B. Imperiali, Curr. Opin. Chem. Biol., 2010, 14, 247.
4 C. S. Bonnet, P. H. Fries, S. Crouzy, O. Sénèque, F. Cisnetti, D. Boturyn,
P. Dumy and P. Delangle, Chem.–Eur. J., 2009, 15, 7083; C. S. Bonnet,
P. H. Fries, S. Crouzy and P. Delangle, J. Phys. Chem. B, 2010, 114,
8770.
5 J.-C. G. Bünzli, Acc. Chem. Res., 2006, 39, 53; D. Parker, Chem. Soc.
Rev., 2004, 33, 156; J.-C. Bünzli and C. Piguet, Chem. Soc. Rev., 2005,
34, 1048.
6 P. Caravan, J. J. Ellison, T. J. McMurry and R. B. Lauffer, Chem. Rev.,
1999, 99, 2293; S. Aime, S. G. Crich, E. Gianolio, G. B. Giovenzana,
L. Tei and E. Terreno, Coord. Chem. Rev., 2006, 250, 1562.
7 J. C. G. Bunzli and S. V. Eliseeva, Chem. Soc. Rev., 2010, 39, 189; J.-C.
G. Bünzli, Chem. Lett., 2009, 38, 104; D. Parker, E. J. New, D. G. Smith
and J. W. Walton, Curr. Opin. Chem. Biol., 2010, 14, 238.
8 C. W. Hogue, J. P. MacManus, D. Banville and A. G. Szabo, J. Biol.
Chem., 1992, 267, 13340; P. Caravan, J. M. Greenwood, J. T. Welch and
S. Franklin, Chem. Commun., 2003, 2574; S. J. Franklin, Curr. Opin.
Chem. Biol., 2001, 5, 201; R. T. Kovacic, J. T. Welch and S. J. Franklin,
J. Am. Chem. Soc., 2003, 125, 6656.
9 J. P. MacManus, C. W. Hogue, B. J. Marsden, M. Sikorska and A.
G. Szabo, J. Biol. Chem., 1990, 265, 10358.
10 K. J. Franz, M. Nitz and B. Imperiali, ChemBioChem, 2003, 4, 265;
M. Nitz, K. J. Franz, R. L. Maglathlin and B. Imperiali, ChemBioChem,
2003, 4, 272.
11 M. Nitz, M. Sherawat, K. J. Franz, E. Peisach, K. N. Allen and
B. Imperiali, Angew. Chem., Int. Ed., 2004, 43, 3682.
12 F. Cisnetti, C. Gateau, C. Lebrun and P. Delangle, Chem.–Eur. J., 2009,
15, 7456.
13 F. Cisnetti, C. Lebrun and P. Delangle, Dalton Trans., 2010, 39, 3560.
14 A. Borics, R. F. Murphy and S. Lovas, J. Biomol. Struct. Dyn., 2004, 21,
761; S. R. Raghothama, S. K. Awasthi and P. Balaram, J. Chem. Soc.,
Perkin Trans. 2, 1998, 137.
The quantum yield measurements were performed according
to Chauvin et al.23 in a 1 cm path length luminescence cell at
25 °C on aqueous solutions of TbPnn′, EuPnn′(50 μM, A280
=
0.3), [Tb(dpa)3]3− (0.107 mM, A280 = 0.295) and [Eu(dpa)3]3−
(0.110 mM, A280 = 0.295) in HEPES buffer (10 mM, 0.1 M
KCl, pH = 7.0). The standard solutions of [Tb(dpa)3]3− and
[Eu(dpa)3]3− were prepared by mixing Tb3+/Eu3+ with dipicoli-
nic acid (dpa) in 1/3 equivalent ratio in HEPES buffer (10 mM,
0.1 M KCl, pH = 7.0) and stirring the resulting mixture during
5 min. The quantum yields Φ have been calculated using the
equation Φx/Φr = (Ex/Er) × (Ar(λr)/Ax(λx)), where x refers to the
sample and r to the reference; E is the integrated luminescence
15 W. M. Kazmierski, Tetrahedron Lett., 1993, 34, 4493; W. M. Kazmierski,
Int. J. Pept. Protein Res., 2009, 45, 241.
16 O. V. Larionov and A. de Meijere, Org. Lett., 2004, 6, 2153.
17 K. Wüthrich, NMR of Proteins and Nucleic Acids, Wiley, New York,
1986.
intensity and A is the absorbance of the solution at the excitation
Tb
dpa
wavelength λ. The values of quantum yields Φ = 18.4 2.5%
18 D. Parker, Coord. Chem. Rev., 2000, 205, 109.
Eu
dpa
(0.107 mM, A280 = 0.295) and Φ = 20.4 2.5% (0.110 mM,
19 P. J. Breen, E. K. Hild and W. W. de Horrocks, Biochemistry, 1985, 24,
4991; W. W. de Horrocks, J. P. Bolender, W. D. Smith and
R. M. Supkowski, J. Am. Chem. Soc., 1997, 119, 5972.
20 W. W. de Horrocks and W. E. Collier, J. Am. Chem. Soc., 1981, 103,
2856.
21 A. Beeby, I. M. Clarkson, R. S. Dickins, S. Faulkner, D. Parker,
L. Royle, A. S. d. Sousa, J. A. G. Williams and M. Woods, J. Chem.
Soc., Perkin Trans. 2, 1999, 493.
A280 = 0.295) were applied to the calculations assuming that the
change of a buffer from Tris (0.1 M, pH = 7.45) to HEPES
(10 mM, 0.1 M KCl, pH = 7.0) has affected the reference values
in the error range.23
22 W. W. de Horrocks and D. R. Sudnick, J. Am. Chem. Soc., 1979, 101,
334.
Acknowledgements
23 A. S. Chauvin, F. Gumy, D. Imbert and J. C. G. Bunzli, Spectrosc. Lett.,
2004, 37, 517; A. S. Chauvin, F. Gumy, D. Imbert and J. C. G. Bunzli,
Spectrosc. Lett., 2007, 40, 193.
24 A. Beeby, L. M. Bushby, D. Maffeo and J. A. G. Williams, J. Chem.
Soc., Dalton Trans., 2002, 48.
The authors wish to thank Dr Daniel Imbert and Dr Graeme
Stasiuk for constructive discussions and experimental assistance
and Yves Chenavier for the synthesis of the unnatural amino acids.
25 M. H. V. Werts, R. T. F. Jukes and J. W. Verhoeven, Phys. Chem. Chem.
Phys., 2002, 4, 1542.
26 C. Piguet, J. M. Senegas, G. Bernardinelli, D. Imbert, J. C. G. Bunzli, P.
Y. Morgantini and J. Weber, Inorg. Chem., 2003, 42, 4680.
27 L. S. McNemar, W. Y. Lin, C. D. Eads, W. M. Atkins, P. Dombrosky and
J. J. Villafranca, Biochemistry, 1991, 30, 3417.
28 I. M. Clarkson, A. Beeby, J. I. Bruce, L. J. Govenlock, M. P. Lowe,
C. E. Mathieu, D. Parker and K. Senanayake, New J. Chem., 2000, 24,
377.
29 B. D. Schlyer, D. G. Steel and A. Gafni, J. Biol. Chem., 1995, 270,
22890.
30 R. S. Dickins, D. Parker, A. S. deSousa and J. A. G. Williams, Chem.
Commun., 1996, 697.
31 T. Forster, Ann. Phys., 1948, 437, 55.
32 F. Bravard, C. Rosset and P. Delangle, Dalton Trans., 2004, 2012.
33 W. S. Hancock and J. E. Battersby, Anal. Biochem., 1976, 71, 260.
34 P. Gans, A. Sabatini and A. Vacca, Talanta, 1996, 43, 1739.
35 R. M. Smith, A. E. Martell and R. J. Motekaitis, NIST Critically Selected
Stability Constants of Metal Complexes Database, NIST Standard Refer-
ence Database 46, 2001.
Notes and references
1 O. Seneque, S. Crouzy, D. Boturyn, P. Dumy, M. Ferrand and
P. Delangle, Chem. Commun., 2004, 770; E. Rossy, O. Seneque,
D. Lascoux, D. Lemaire, S. Crouzy, P. Delangle and J. Coves, FEBS
Lett., 2004, 575, 86; P. Rousselot-Pailley, O. Seneque, C. Lebrun,
S. Crouzy, D. Boturyn, P. Dumy, M. Ferrand and P. Delangle, Inorg.
Chem., 2006, 45, 5510; S. J. Opella, T. M. DeSilva and G. Veglia, Curr.
Opin. Chem. Biol., 2002, 6, 217; G. Veglia, F. Porcelli, T. DeSilva,
A. Prantner and S. J. Opella, J. Am. Chem. Soc., 2000, 122, 2389;
J. Jiang, I. A. Nadas, M. A. Kim and K. J. Franz, Inorg. Chem., 2005,
44, 9787; K. J. Franz, K. L. Haas, A. B. Putterman, D. R. White and
D. J. Thiele, J. Am. Chem. Soc., 2011, 133, 4427; K. J. Franz, J.
T. Rubino, M. P. Chenkin, M. Keller and P. Riggs-Gelasco, Metallomics,
2011, 3, 61; K. J. Franz, J. T. Rubino and P. Riggs-Gelasco, JBIC,
J. Biol. Inorg. Chem., 2010, 15, 1033.
2 A. M. Pujol, C. Gateau, C. Lebrun and P. Delangle, J. Am. Chem. Soc.,
2009, 131, 6928; A. M. Pujol, M. Cuillel, O. Renaudet, C. Lebrun,
P. Charbonnier, D. Cassio, C. Gateau, P. Dumy, E. Mintz and P. Delangle,
This journal is © The Royal Society of Chemistry 2012
Dalton Trans., 2012, 41, 3239–3247 | 3247