A. H. Haines / Tetrahedron Letters 45 (2004) 835–837
837
79.45 (4-C), 77.68 (2-C), 77.43 (5-C), 77.13 (3-C), 73.52
and 72.04 (2 · CH2Ph), 71.41 (6-C), 26.84 and 26.54
(CMe2); m=z (CI): 800.5 [M+NH4]þ. (Found: [M+NH4]þ
800.3995. C46H58NO11 requires m=z 800.4004.)
between
D-gluconolactone and D-glucose residues, and
17
ꢀ
Hodosi and Kovac, in investigating the use of 1,2-
stannylene acetals for glycoside synthesis, isolated
compounds with 3 fi 6, 2 fi 4 and 2 fi 6 ether links be-
tween two carbohydrate residues, in one case as the
major product. It would seem that ether-linked pseudo-
disaccharides merit further attention, both from the
synthetic standpoint and because of their potentially
interesting biological properties.
9 (oil): ½aꢁ +56.7ꢁ (c 1.33, CHCl3); dH (400 MHz, CDCl3)
D
5.71 (1H, d, J1;2 3.7 Hz, 1-H), 4.58 (1H, dd, J2;3 4.3 Hz, 2-
H), 4.09 (1H, dd, J3;4 8.6 Hz, 3-H), 4.01 (1H, m, 5-H), 3.85
(1H, dd, J4;5 3.5 Hz, 4-H), 3.68 (1H, dd, J5;6 3.4, J6a;6b
10 Hz, 6a-H), 3.60 (1H, dd, J5;6b 3.9 Hz, 6b-H), 1.51 and
1.29 (each 3H, CMe2); dC (100 MHz, CDCl3) 112.78
(CMe2), 103.42 (1-C), 81.08 (4-C), 79.75 (2-C), 71.30 (6-
C), 69.94 (3-C), 68.88 (5-C), 26.64 and 26.31 (CMe2); m=z
(CI): 440.3 [M+NH4]þ. (Found: [M+NH4]þ 440.2129.
C18H34NO11 requires m=z 440.2126.)
Acknowledgements
10 (oil): ½aꢁ +19.1ꢁ (c 0.83, H2O); dH (400 MHz, D2O)
D
(major isomer) 4.88 (d, J1;2 8.2 Hz, 1-H), 4.16 (br s, 3-H),
3.95–3.86 (complex, 5-H), 3.82 (br d, J6a;6b 11 Hz, 6a-H),
3.77–3.61 (complex, 4- and 6b-H), 3.41 (br d, 2-H)); dC
(100 MHz, H2O) 94.19 (major anomer 1-C), 93.57 (minor
anomer 1-C), 73.10, 71.86, 71.81, 71.30, 67.55 (2-C to 6-
C); m=z (ES): 365.2 [M+Na]þ. (Found: [M+Na]þ
365.1059. C12H22O11Na requires m=z 365.1054.)
I thank the EPSRC Mass Spectrometry Service Centre,
Swansea for determination of the high-resolution mass
spectra, and Dr. Balaram Mukhopadhyay for helpful
discussion and for his measurement of the NMR spectra
without which this work would not have been possible.
11, mp 132–134 ꢁC: ½aꢁ )4ꢁ (c 0.45, CHCl3); dH
D
(400 MHz, CDCl3) 5.97 (1H, d, J1;2 8.7 Hz, 1-H), 5.70
(1H, dd, J2;3 3, J3;4 3 Hz, 3-H), 4.98 (1H, dd, J4;5 8.4 Hz, 4-
H), 4.97 (1H, dd, 2-H), 4.10 (1H, ddd, J5;6a 3, J5;6b 4.8 Hz,
5-H), 3.67 (1H, dd, J6a;6b 11.8 Hz, 6a-H), 3.56 (1H, dd, 6b-
H), 2.15, 2.11, 2.01, 2.00 (each 3H, CH3CO); dC (100 MHz,
References and notes
ꢀ
ꢀ
ꢀ
1. Perez, G. S.; Perez, G. R. M.; Perez, G. C.; Zavala, S. M.
A.; Vargas, S. R. Pharm. Acta Helv. 1997, 72, 105–111.
2. Unfortunately, the author has not been able to obtain a
sample of coyolosa, its peracetate, or original spectra for
comparison purposes.
CDCl3)
169.95,
169.34,
169.13,
169.09
(4 ·
–CO–), 90.06 (1-C), 72.90 (5-C), 70.22 (6-C), 68.28 (3-C),
68.03 (2- or 4-C), 65.90 (4- or 2-C), 20.76, 20.52, 20.38 (·2)
(CH3CO); m=z (CI): 696.3 [M+NH4]þ. (Found:
[M+NH4]þ 696.2348. C28H42NO19 requires m=z 696.2346.)
6. Collins, P. M.; Ferrier, R. J. Monosaccharides; Wiley:
Chichester, 1995. p 41.
3. Roberts, S. M.; Shoberu, K. A. J. Chem. Soc., Perkin
Trans. 1 1992, 2625–2632.
4. Baker, D. C.; Horton, D.; Tindall, C. G. In Methods in
Carbohydrate Chemistry; Whistler, R. L., BeMiller, J. N.,
Eds.; Academic Press: New York, 1976; Vol. 7, pp 3–6.
5. All new compounds gave consistent spectral and high
resolution mass spectrometric data. Data are given below
for selected compounds; optical rotations were measured
at 20 ꢁC and for compounds 8, 9, 10 and 11, in which the
two carbohydrate rings are related by symmetry, NMR
data are recorded for one ring moiety only.
7. Collins, P. M.; Ferrier, R. J. Monosaccharides; Wiley:
Chichester, 1995; p 535.
8. Disagreement in the mp of the two peracetates could be
explained by the seemingly unlikely occurrence of the
natural material as the 6,60-ether derived from
D
- and
allose, but the NMR spectra of such an unsymmetrical
dimer would be identical to that of the symmetrical
or -compound with the very reasonable assumption
that there is no internuclear coupling across the ether link.
L-
D,D-
L,L
4 (oil): ½aꢁ +39ꢁ (c 0.6, CHCl3); dH (300 MHz, CDCl3)
D
ꢁ
ꢁ
ꢀ
9. Farkas, J.; Sebesta, K.; Horska, K.; Samek, Z.; Dolejs, L.;
Sorm, F. Collect. Czech. Chem. Commun. 1969, 34, 1118–
ꢁ
7.72–7.62, 7.48–7.33, 7.30–7.26 (15H, 3 · m, Ar-H), 5.72
(1H, d, J1;2 3.6 Hz, 1-H), 4.67 and 4.50 (each 1H and d, JAB
12 Hz, OCH2Ph), 4.52 (1H, dd, J2;3 4.2 Hz, 2-H), 4.10 (1H,
dd, J3;4 8.7, J4;5 3.9 Hz, 4-H), 4.05 (1H, m, 5-H), 3.93 (1H,
dd, 3-H), 3.82–3.72 (2H, complex, 6a- and 6b-H), 1.57 and
1.35 (each 3H, CMe2), 1.07 (9H, CMe3); dC (75 MHz,
CDCl3) 137.55–127.81 (10 · s, Ar-C), 112.95 (CMe2),
104.10 (1-C), 77.88 (4-C), 77.74 (2-C), 77.52 (3-C), 72.05
(CH2Ph), 71.88 (5-C), 64.47 (6-C), 26.69 (CMe3, CMeMe),
26.51 (CMeMe), 19.11 (SiCMe3); m=z (CI): 566.3
[M+NH4]þ. (Found: [M+NH4]þ 566.2935. C32H44NO6Si
requires m=z 566.2932.)
ꢁ
1120.
10. Prystas, M.; Sorm, F. Collect. Czech. Chem. Commun.
ꢁ
ꢁ
1971, 36, 1448–1471.
11. Whistler, R. L.; Frowein, A. J. Org. Chem. 1961, 26, 3947–
3948.
ꢀ
12. Vanbaelinghem, L.; Gode, P.; Goethals, G.; Martin,
P.; Ronoco, G.; Villa, P. Carbohydr. Res. 1998, 311, 89–
94.
13. Rauter, A. P.; Figueiredo, J.; Ismael, M.; Canda, T.; Font,
J.; Figueredo, M. Tetrahedron: Asymmetry 2001, 12, 1131–
1146.
14. Rkagaku Konkjuse. JP 50128024, 1977; RU 9N112P,
1978.
15. Paulsen, H.; von Deyn, W. Liebigs Ann. Chem. 1987, 141–
152.
16. Vlahov, I. R.; Valhova, P. I.; Schmidt, R. R. Tetrahedron
Lett. 1992, 33, 7503–7506.
8 (oil): ½aꢁ +85.7ꢁ (c 0.43, CHCl3); dH (400 MHz, CDCl3)
D
7.38–7.17 (10H, m, Ar-H), 5.65 (1H, d, J1;2 3.3 Hz, 1-H),
4.68 and 4.51 (each 1H and d, JAB 11.8 Hz, OCH2Ph), 4.63
(2H, s, OCH2Ph), 4.44 (1H, dd, J2;3 3.7 Hz, 2-H), 4.19 (1H,
dd, J3;4 8.5, J4;5 1.6 Hz, 4-H), 4.00 (1H, dd, 3-H), 3.91 (1H,
m, 5-H), 3.54 (2H, d, J5;6a and J5;6b 6 Hz, 6a- and 6b-H),
1.56 and 1.33 (each 3H, CMe2); dC (75 MHz, CDCl3)
139.04–127.35 (8 · s, Ar-C), 112.98 (CMe2), 104.15 (1-C),
ꢀ
17. Hodosi, G.; Kovac, P. Carbohydr. Res. 1998, 308, 63–75.