trimethyl phosphate and proton sponge gave the phospho-
rodichloridates as intermediates, which were converted in
situ with pyrophosphate to the corresponding triphosphates.
Hydrolysis with NH4OH gave the desired nucleotide
triphosphates, 18 and 19 (Scheme 4).
Scheme 4a
Figure 1. Primer extension experiment using amino-functionalized
2′-deoxycytidine triphosphate 19. Denaturing 20% PAGE-urea gel
was used. 5′-Radiolabeled primer was visualized by a phospho-
imager. All lanes contain annealed primer and template, buffer,
and water. Lane 1: All natural dNTPs (0.1 mM each), no
polymerase (negative control). Lane 2: Vent (exo-) DNA poly-
merase and dCTP only showing pausing after incorporation of dC.
Lane 3: Vent (exo-) polymerase and natural dNTPs showing
formation of full-length product (positive control). Lane 4: Vent
(exo-) polymerase and 19 only, showing incorporation of a single
19; lower mobility due to positively charged functionality. Lane 5:
Vent (exo-) polymerase and 19, dTTP, dGTP, dATP, expecting
incorporation of three 19s.
a Conditions: (a) POCl3/(MeO)3P(O)/proton sponge/2.5 h/0 °C;
(b) Tri-n-butylammonium pyrophosphate/n-tributylamine/DMF/
TEAB/2 min/0 °C to rt; (c) NH3/rt/18 h.
The ability of the functionalized dCTP analogues (18 and
19) to serve as substrates for thermostable DNA polymerases
under PCR conditions was then studied. Since different
polymerases often behave differently with unnatural nucleo-
sides,4h representatives of two evolutionary families of DNA
polymerases13 were examined. These were the Taq DNA
polymerase from Thermus aquaticus (representing Family
A) and Vent (exo-) DNA polymerase from Thermococcus
litoralis (representing Family B).
Primer extension experiments were done using PAGE-
purified 5′-[γ-32P]-radiolabeled primer (5′-GCG TAA TAC
GAC TCA CTA TAG-3′) and template (5′-GAC ACG CGC
TAT AGT GAG TCG TAT TAC GC-3′) (both from
Integrated DNA Technologies, Coralville, IA).
Taq incorporated neither 18 nor 19 with acceptable
efficiency (data not shown). Vent (exo-) DNA polymerase
incorporated both 18 and 19. Thus, Vent polymerase
incorporated 19 (Figure 1; Lane 6) opposite G in a single
base extension. Full-length product was obtained upon
addition of a complete set of natural triphosphates excluding
dCTP (Figure 1; Lane 5).
Similarly successful incorporation was observed for ana-
logue 18 with protected thiol functionality (data in Supporting
Information).
Compound 19 carrying a free amino group successfully
replaced dCTP in PCR amplification using Vent (exo-)
polymerase (Figure 2; Lane 6). This PCR required incorpo-
ration of 22 and 31 functionalized cytidine analogues per
strand in the forward and reverse reactions.
(7) (a) Hashimoto, H.; Nelson, M. G.; Switzer, C. J. Am. Chem. Soc.
1993, 115, 7128-7134. (b) Fischhaber, P. L.; Reese, A. W.; Nguyen, T.;
Kirchner, J. J.; Hustedt, E. J.; Robinson, B. H.; Hopkins, P. B. Nucleosides
Nucleotides 1997, 16, 367-377. (c) Pedersen, H.; Abilgaard Slok, F.;
Godskesen, M. A.; Hyldtoft, L.; Klarner Sams, C. IP WO 02/102820 A1,
2002 (CAN 138: 73461). (d) Kuwahara, M.; Takahata, Y.; Shoji, A.; Ozaki,
A. N.; Ozaki, H.; Sawai, H. Bioorg. Med. Chem. Lett. 2003, 13, 3735-
3738.
(8) Held, H. A.; Roychowdhury, A.; Steven A. Benner Nucleosides,
Nucleotides Nucleic Acids 2003, 22, 391-404.
(9) (a) Taylor, E. C.; Macor, J. E.; Pont, J. L. Tetrahedron 1987, 43,
5145-5158. (b) Taylor, E. C.; Gillespie, P.; Patel, M. J. Org. Chem. 1992,
57, 3218-3225.
(10) (a) Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron Lett. 1975,
50, 4467-4470. (b) Hobbs, F. W.; Trainor, G. L US Pat 5151507, 1992.
(11) Kierzek, R.; Ito, H.; Bhatt, R.; Itakura, K. Tetrahedron Lett. 1981,
22, 3761-3764.
(12) (a) Ludwig, J.; Eckstein, F. J. Org. Chem. 1989, 54, 631-635. (b)
Kovacs, T.; Otvos, L. Tetrahedron Lett. 1988, 29, 4525.
Figure 2. PCR amplification with 19 replacing dCTP. Agarose
gel (2%) was used and stained with ethidium bromide. A total of
25 PCR cycles were run, with 2 min each incubation. Lane 1:
Promega DNA ladder 25-300 nts. Lane 2: Negative control,
lacking polymerase. Lane 3: Positive control with standard dNTPs.
Lane 4: Positive control including both 2′-dCTP and 19 (1:1 ratio)
and standard dNTPs. Lane 5: With 2 µM 19 and standard dNTPs.
Lane 6: With 4 µM 19 and standard dNTPs. Template (100mer):
5′-CGC ATT ATG CTG AGT GAT ATC TAT CCA GAC CTA
GAA AGA GTG CAC TGA TGC TGT TCG AGC GCA CGG
CCT CCA ACA TGC CGT CCA TGC ACC ACT AGA CCT C-3′.
Primer (24mer): 5′-GAG GTC TAG TGG TGC ATG GAC GGC-
3′. Reverse primer (24mer): 5′-CGC ATT ATG CTG AGT GAT
ATC TAT-3′.
(13) (a) Horlacher, J.; Hottiger, M.; Podust, V. N.; Huebscher, U.; Benner,
S. A. Proc. Natl. Acad. Sci. U.S.A. 1995, 92, 6329-6333. (b) Delarue, M.;
Poch, O.; Tordo, N.; Moras, D.; Argos, P. Prot. Eng. 1990, 3, 461-467.
Org. Lett., Vol. 6, No. 4, 2004
491