Organic Letters
Letter
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
Complete experimental procedures, product character-
ization, spectroscopic data for all new compounds, and
other experimental details (PDF)
AUTHOR INFORMATION
Corresponding Author
■
Notes
Figure 1. Taxane-binding site in β-tubulin showing bound 1a (C
atoms in yellow) and 5e (C atoms in green).
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
S.R.W. and W.S.F. thank the National Natural Science
Foundation of China (Grant Nos. 30930108 and 81202434)
for financial support. F.G. is grateful to the Spanish Ministerio
compensate for the worse fit and the lack of interaction with
NH of Thr276. Furthermore, if the substituent at C20 lacks the
OH, the binding affinity drops dramatically because neither a
methyl group (as in 5c) nor a methoxy group (as in 5b) can be
accommodated in the polar and relatively small subpocket that
lodges the oxetane of 1a in β-tubulin. The beneficial effect of
the allyloxy group over an acetoxy on C4 is also manifested in
taxane 1d, which displays greater affinity for tubulin and is
slightly more cytotoxic on HeLa cells than 1a (Table 1 and
́
de Economıa y Competitividad (SAF2012-39760-C02-02) and
Comunidad Automoma de Madrid (S2010-BMD-2457). We
́
also thank Dr. Ruth Matesanz (CSIC, Madrid, Spain) for her
work on the biological evaluation of partial compounds during
her visit to IMM.
REFERENCES
(1) Dubois, J.; Thoret, S.; Guer
2000, 41, 3331−3334.
■
́
itte, F.; Guen
́
ard, D. Tetrahedron Lett.
In general, both opening of the oxetane D ring and
shortening of 4-OAc to 4-OMe decreased the interaction
with tubulin and also the cytotoxicity. The biological activity
was almost abolished in 4-OH and -H analogs.11 The
substituents attached to C4, on the other hand, extend deep
into the cavity and are directed toward the floor of the tubulin
binding pocket, resulting in either no contact with the floor or,
if long enough, a hydrophobic interaction that improves
binding provided there no steric clash. There is an exception
to the lack of C4 substituent contact as described above,
namely the encounter between the C4 unit and water
molecules that occupy the binding site in the absence of ligand.
Apart from the above-mentioned enthalpy considerations,
the enhanced bioactivity of 5e can also be explained through an
entropy-driven process. The taxane-tubulin binding pocket is an
expansive cavity capable of binding a wide variety of antitubulin
drugs12 as well as a pool of water molecules in the absence of
ligand. MT binding of such molecules can lead to either
favorable or unfavorable entropy contributions to ΔG, as
demonstrated by Buey et al.13 It can be hypothesized that the
improvement of the binding and cytotoxic action of compound
5e relative to the other D-seco compounds in Table 1 results
from penetration of the allyloxy group into the tubulin binding
pocket leading to the displacement of one or more tightly
bound water molecules. The accompanying favorable ligand
desolvation entropy can be enhanced by installation of C4
moieties that are able to drive out additional water molecules
and, thereby, improve the tubulin binding affinity and cytotoxic
potential of the D-seco class of agents.
(2) Barboni, L.; Giarlo, G.; Ricciutelli, M.; Ballini, R.; Georg, G. I.;
Vander Velde, D. G.; Himes, R. H.; Wang, M. M.; Lakdawala, A.;
Snyder, J. P. Org. Lett. 2004, 6, 461−464.
(3) Loewe, J.; Li, H.; Downing, K. H.; Nogales, E. J. Mol. Biol. 2001,
313, 1045−1057.
(4) Thoret, S.; Guer
8, 2301−2304.
́ ́
itte, F.; Guenard, D.; Dubois, J. Org. Lett. 2006,
(5) Chen, S. H. Tetrahedron Lett. 1996, 37, 3935−3938.
(6) Gunatilaka, A. A. L.; Ramdayal, F. D.; Sarragiotto, M. H.;
Kingston, D. G. I.; Sackett, D. L.; Hamel, E. J. Org. Chem. 1999, 64,
2694−2703.
́
(7) Wang, S. R.; Sanchez-Murica, P. A.; Gago, F.; Fang, W. S. Org.
(8) Wessel, H. P.; Viaud, M. C.; Gardon, V. Carbohydr. Res. 1993,
245, 233−244.
(9) (a) Georg, G. I.; Ali, S. M.; Boge, T. C.; Datta, A.; Falborg, L.
Tetrahedron Lett. 1994, 35, 8931−8934. (b) Chordia, M. D.; Yuan, H.;
Jagtap, P. G.; Kadow, J. F.; Long, B. H.; Fairchild, C. R.; Johnston, K.
A.; Kingston, D. G. I. Bioorg. Med. Chem. 2001, 9, 171−178.
(10) Alushin, G. M.; Lander, G. C.; Kellogg, E. H.; Zhang, R.; Baker,
D.; Nogales, E. Cell 2014, 157, 1117−1129.
(11) (a) Neidigh, K. A.; Gharpure, M. M.; Rimoldi, J. M.; Kingston,
D. G. I. Tetrahedron Lett. 1994, 35, 6839−6842. (b) Chordia, M. D.;
Chaudhary, A. G.; Kingston, D. G. I. Tetrahedron Lett. 1994, 35,
6843−6846.
(12) (a) Nettles, J. H.; Li, H.; Cornett, B.; Krahn, J. M.; Snyder, J. P.;
Downing, K. H. Science 2004, 305, 866−869. (b) Kingston, D. G. I.;
Snyder, J. P. Acc. Chem. Res. 2014, 47, 2682−2691. (c) Daly, E. M.;
Taylor, R. E. Curr. Chem. Biol. 2009, 3, 47−59.
(13) Buey, R. M.; Barasoain, I.; Jackson, E.; Meyer, A.; Giannakakou,
P.; Paterson, I.; Mooberry, S.; Andreu, J. M.; Díaz, J. F. Chem. Biol.
2005, 12, 1269−1279.
In conclusion, the present results demonstrate that an intact
D ring in taxanes is not strictly necessary for their interaction
with tubulin and for exerting their cytotoxic effects.
D
Org. Lett. XXXX, XXX, XXX−XXX