Organic Letters
Letter
with R3COCl to form the bis-acylated phosphonium salt 9,
which further provides the ylide E in the presence of the base.
The ylide E then undergoes a chemoselective intramolecular
Wittig reaction at the ester carbonyl (phenolic site) to afford
the chromenone-oxime 11.
COX-2. J. Med. Chem. 2000, 43, 775−777. (f) Zhang, H.-Z.; Zhao, Z.-
L.; Zhou, C.-H. Recent advance in oxazole-based medicinal chemistry.
Eur. J. Med. Chem. 2018, 144, 444−492.
́
́
(2) (a) Fustero, S.; Roman, R.; Sanz-Cervera, J. F.; Simon-Fuentes,
A.; Cunat, A. C.; Villanova, S.; Murguía, M. Improved Regioselectivity
̃
in Pyrazole Formation through the Use of Fluorinated Alcohols as
Solvents: Synthesis and Biological Activity of Fluorinated Tebufen-
pyrad Analogs. J. Org. Chem. 2008, 73, 3523−3529. (b) Foster, R. S.;
Huang, J.; Vivat, J. F.; Browne, D. L.; Harrity, J. P. A divergent
strategy to the withasomnines. Org. Biomol. Chem. 2009, 7, 4052−
4056. (c) Lahm, G. P.; Cordova, D.; Barry, J. D.; Pahutski, T. F.;
Smith, B. K.; Long, J. K.; Benner, E. A.; Holyoke, C. W.; Joraski, K.;
Xu, M.; Schroeder, M. E.; Wagerle, T.; Mahaffey, M. J.; Smith, R. M.;
Tong, M. H. 4-Azolylphenyl isoxazoline insecticides acting at the
GABA gated chloride channel. Bioorg. Med. Chem. Lett. 2013, 23,
3001−3006. (d) Baraldi, P. G.; Barco, A.; Benetti, S.; Pollini, G. P.;
Simoni, D. Synthesis of Natural Products via Isoxazoles. Synthesis
1987, 1987, 857−869.
In summary, an efficient strategy for the synthesis of
substituted pyrazoles and isoxazoles is developed via a
phosphine-mediated Wittig reaction of α-halohydrazones or
ketoximes under mild and metal-free conditions. Further a
chemoselective Wittig reaction was also realized by appropriate
functionalization of ketoximes, which subsequently led to
biologically relevant chromenenone-oxime scaffolds. Further
investigations to construct diverse heteroarenes utilizing this
protocol are underway in our laboratory.
ASSOCIATED CONTENT
* Supporting Information
■
S
(3) Charvin, D.; Pomel, V.; Ortiz, M.; Frauli, M.; Scheffler, S.;
Steinberg, E.; Baron, L.; Deshons, L.; Rudigier, R.; Thiarc, D.; Morice,
C.; Manteau, B.; Mayer, S.; Graham, D.; Giethlen, B.; Brugger, N.;
The Supporting Information is available free of charge on the
́
Hedou, G.; Conquet, F.; Schann, S. Discovery, Structure−Activity
Relationship, and Antiparkinsonian Effect of a Potent and Brain-
Penetrant Chemical Series of Positive Allosteric Modulators of
Metabotropic Glutamate Receptor 4. J. Med. Chem. 2017, 60, 8515−
8537.
Optimization data, experimental procedures, character-
ization data and spectra of all compounds (PDF)
Accession Codes
(4) For selected reviews of pyrazole synthesis, see: (a) Fustero, S.;
Sanchez-Rosello, M.; Barrio, P.; Simon-Fuentes, A. From 2000 to
mid-2010: a fruitful decade for the synthesis of pyrazoles. Chem. Rev.
2011, 111, 6984−7034. (b) Ansari, A.; Ali, A.; Asif, M.;
Shamsuzzaman, S. Review: biologically active pyrazole derivatives.
New J. Chem. 2017, 41, 16−41. (c) Karrouchi, K.; Radi, S.; Ramli, Y.;
Taoufik, J.; Mabkhot, Y. N.; Al-Aizari, F. A.; Ansar, M. Synthesis and
Pharmacological Activities of Pyrazole Derivatives: A Review.
Molecules 2018, 23, 134. (d) Keerthi Krishnan, K.; Ujwaldev, S. M.;
Saranya, S.; Anilkumar, G.; Beller, M. Recent Advances and
Perspectives in the Synthesis of Heterocycles via Zinc Catalysis.
Adv. Synth. Catal. 2019, 361, 382−404. For selected reviews of
isoxazole synthesis, see: (e) Hu, F.; Szostak, M. Recent Developments
in the Synthesis and Reactivity of Isoxazoles: Metal Catalysis and
Beyond. Adv. Synth. Catal. 2015, 357, 2583−2614. (f) Morita, T.;
Yugandar, S.; Fuse, S.; Nakamura, H. Recent progresses in the
synthesis of functionalized isoxazoles. Tetrahedron Lett. 2018, 59,
1159−1171. (g) Agrawal, N.; Mishra, P. The synthetic and
therapeutic expedition of isoxazole and its analogs. Med. Chem. Res.
2018, 27, 1309−1344.
crystallographic data for this paper. These data can be obtained
Cambridge Crystallographic Data Centre, 12 Union Road,
Cambridge CB2 1EZ, UK; fax: +44 1223 336033.
AUTHOR INFORMATION
■
Corresponding Author
ORCID
Notes
The authors declare no competing financial interest.
(5) (a) Guo, H.; Fan, Y. C.; Sun, Z.; Wu, Y.; Kwon, O. Phosphine
Organocatalysis. Chem. Rev. 2018, 118, 10049−10293. (b) Rocha, D.
H. A.; Pinto, D. C. G. A.; Silva, A. M. S. Applications of the Wittig
Reaction on the Synthesis of Natural and Natural-Analogue
Heterocyclic Compounds. Eur. J. Org. Chem. 2018, 2018, 2443−
2457. (c) Karanam, P.; Reddy, G. M.; Lin, W. Strategic Exploitation
of the Wittig Reaction: Facile Synthesis of Heteroaromatics and
Multifunctional Olefins. Synlett 2018, 29, 2608−2622.
(6) (a) Yang, S. M.; Wang, C. Y.; Lin, C. K.; Karanam, P.; Reddy, G.
M.; Tsai, Y. L.; Lin, W. Diversity-Oriented Synthesis of Furo[3,2-
c]coumarins and Benzofuranyl Chromenones through Chemo-
selective Acylation/Wittig Reaction. Angew. Chem., Int. Ed. 2018,
57, 1668−1672. (b) Chen, Y. R.; Reddy, G. M.; Hong, S. H.; Wang,
Y. Z.; Yu, J. K.; Lin, W. Four-Component Synthesis of Phosphonium
Salts: Application Toward an Alternative Approach to Cross-Coupling
for the Synthesis of Bis-Heteroarenes. Angew. Chem., Int. Ed. 2017, 56,
5106−5110. (c) Tsai, Y.-L.; Fan, Y.-S.; Lee, C.-J.; Huang, C.-H.; Das,
U.; Lin, W. An efficient synthesis of trisubstituted oxazoles via
chemoselective O-acylations and intramolecular Wittig reactions.
Chem. Commun. 2013, 49, 10266−10268. (d) Lee, Y. T.; Lee, Y. T.;
Lee, C. J.; Sheu, C. N.; Lin, B. Y.; Wang, J. H.; Lin, W.
Chemoselective synthesis of tetrasubstituted furans via intramolecular
Wittig reactions: mechanism and theoretical analysis. Org. Biomol.
ACKNOWLEDGMENTS
■
We thank the Ministry of Science and Technology of the
Republic of China (MOST 107-2628-M-003-001-MY3) for
financial support..
REFERENCES
■
(1) (a) Kucukguzel, S. G.; Senkardes, S. Recent advances in
bioactive pyrazoles. Eur. J. Med. Chem. 2015, 97, 786−815. (b) Khan,
M. F.; Alam, M. M.; Verma, G.; Akhtar, W.; Akhter, M.;
Shaquiquzzaman, M. The therapeutic voyage of pyrazole and its
́
analogs: A review. Eur. J. Med. Chem. 2016, 120, 170−201. (c) Szabo,
́
G.; Fischer, J.; Kis-Varga, A.; Gyires, K. New Celecoxib Derivatives as
Anti-Inflammatory Agents. J. Med. Chem. 2008, 51, 142−147.
(d) Williams, J. K.; Tietze, D.; Wang, J.; Wu, Y.; DeGrado, W. F.;
Hong, M. Drug-induced conformational and dynamical changes of the
S31N mutant of the influenza M2 proton channel investigated by
solid-state NMR. J. Am. Chem. Soc. 2013, 135, 9885−9897. (e) Talley,
J. J.; Brown, D. L.; Carter, J. S.; Graneto, M. J.; Koboldt, C. M.;
Masferrer, J. L.; Perkins, W. E.; Rogers, R. S.; Shaffer, A. F.; Zhang, Y.
Y.; Zweifel, B. S.; Seibert, K. 4-[5-Methyl-3-phenylisoxazol-4-yl]-
benzenesulfonamide, Valdecoxib: A Potent and Selective Inhibitor of
D
Org. Lett. XXXX, XXX, XXX−XXX