StereoselectiVe Biotransformation of Permethrin
Chem. Res. Toxicol., Vol. 23, No. 10, 2010 1575
estrogenic activity in agricultural areas of California’s inland waters.
EnViron. Sci. Technol. 43, 9110–9116.
(24) Mosmann, T. (1983) Rapid colorimetric assay of cellular growth and
survival: Application to proliferation and cytotoxicity assays. J. Im-
munol. Methods 65, 55–63.
(25) U.S. Environmental Protection Agency (USEPA) (1994) Short-term
Methods for Estimating the Chronic Toxicity of Effluents and ReceiVing
Waters to Freshwater Organism, EPA-600-4-91-002.
(26) Lavado, R., Rimoldi, J., and Schelenk, D. (2009) Mechanisms of
fenthion activation in rainbow trout (Oncorhynchus mykiss) acclimated
to hypersaline environments. Toxicol. Appl. Pharmacol. 235, 143–
152.
(27) Godin, S. J., Scollon, E. J., Hughes, M. F., Potter, P. M., DeVito,
M. J., and Ross, M. K. (2006) Species differences in the in vitro
metabolism of deltamethrin and esfenvalerate: differential oxidative
and hydrolytic metabolism by humans and rats. Drug Metab. Dispos.
34, 1764–1771.
(28) Choi, J., Rose, R. L., and Hodgson, E. (2002) In vitro human
metabolism of permethrin: the role of human alcohol and aldehyde
dehydrogenases. Pestic. Biochem. Physiol. 74, 117–128.
(29) Hutchinson, T. H., Ankley, G. T., Segner, H., and Tyler, C. H. (2006)
Screening and testing for endocrine disruption in fish: Biomarkers as
“signposts,” not “traffic lights,” in risk assessment. EnViron. Health
Perspect. 114, 106–114.
(30) Sumpter, J. P., and Johnson, A. C. (2005) Lessons from the endocrine
disruption and their application to other issues concerning trace organic
in the aquatic environment. EnViron. Sci. Technol. 39, 4321–4332.
(31) Fang, H., Tong, W., Shi, L. M., Blair, R., Perkins, R., Branham, W.,
Hass, B. S., Xie, Q., Dial, S. L., Moland, C. L., and Sheehan, D. M.
(2001) Structure-activity relationships for a large diverse set of natural,
synthetic, and environmental estrogens. Chem. Res. Toxicol. 14, 280–
294.
(32) Pesonen, M., and Andersson, T. (1991) Characterization and induction
of xenobiotic metabolizing enzyme activities in a primary culture of
rainbow trout hepatocytes. Xenobiotica 21, 461–471.
(33) Parkinson, A., and Ogilvie, B. W. (2009) Biotransformation of
Xenobiotics, in Casertt and Doull’s Toxicology: The Basic Science
of Poisons (Klaassen, C. D., Ed.) 7th ed., pp161-304, McGraw Hill,
New York.
(34) Scollon, E. J., Starr, J. M., Godin, S. J., DeVito, M. J., and Hughes,
M. F. (2009) In vitro metabolism of pyrethroid pesticides by rat and
human hepatic microsomes and cytochrome P450 Isoforms. Drug
Metab. Dispos. 37, 221–228.
(35) Zhang, S. Y., Ueyama, J., Ito, Y., Yanagiba, Y., Okamura, A.,
Kamijima, M., and Nakajima, T. (2008) Permethrin may induce male
mouse reproductive toxicity due to cis isomer not trans isomer.
Toxicology 248, 136–141.
References
(1) Spurlock, F., and Lee, M. (2008) Synthetic Pyrethroids Use Patterns,
Properties and Environmental Effects, in Synthetic Pyrethroids:
Occurrence and BehaVior in Aquatic EnVironments (Gan, J., Spurlock,
F., Hendley, P., and Weston, D., Eds.) ACS Symposium Series 991,
pp 3-25, American Chemical Society, Washington, DC.
(2) Laskowski, D. (2002) Physical and chemical properties of pyrethroids.
ReV. EnViron. Contam. Toxicol. 174, 49–170.
(3) Gan, J., Lee, S. J., Liu, W. P., Haver, D. L., and Kabashima, J. N.
(2005) Distribution and persistence of pyrethroids in runoff sediments.
J. EnViron. Qual. 34, 836–841.
(4) Amweg, E., Weston, D., You, J., and Lydy, M. (2006) Pyrethroid
insecticides and sediment toxicity in Urban creeks from California
and Tennessee. EnViron. Sci. Technol. 40, 1700–1706.
(5) Coats, J. R. (2008) Toxicology of Synthetic Pyrethroid Insecticides
in Fish, in Toxicology of Fishes (DiGiulio, R. T., and Hinton, D. E.,
Eds.) pp 805-817, Taylor and Francis, Boca Raton, FL.
(6) Leahey, J. P. (1985) The Pyrethroid Insecticides, Taylor and Francis,
London, U.K.
(7) Glickman, A. H., and Lech, J. J. (1981) Hydrolysis of permethrin, a
pyrethroid insecticide, by rainbow trout and mouse tissues In Vitro:
A comparative study. Toxicol. Appl. Pharmacol. 60, 186–192.
(8) Bradbury, S., and Coats, J. (1989) Toxicokinetics and toxicodynamics
of pyrethroid insecticides in fish. EnViron. Toxicol. Chem. 8, 373–
380.
(9) Elliot, M., Farnham, A., Janes, N., Needham, P., and Pulman, D. (1974)
Insecticidally Active Confirmations of Pyrethroids, in Mechanism of
Pesticide Action (Kohn, G., Ed.) pp 80-91, American Chemical
Society, Washington DC.
(10) Leicht, W., Fuchs, R., and Londershausen, M. (1996) Stability and
biological activity of cyfluthrin isomers. Pestic. Sci. 48, 325–332.
(11) Liu, W., Gan, J., Schlenk, D., and Jury, W. 2005a Enantioselectivity
in environmental safety of current chiral insecticides. Proc. Natl. Acad.
Sci. U.S.A. 102, 701–706.
(12) Qin, S., Budd, R., Bondarenko, S., Liu, W., and Gan, J. (2006)
Enantioselective degradation and chiral stability of pyrethroids in soil
and sediment. J. Agric. Food Chem. 54, 5040–5045.
(13) Wang, L. M., Liu, W., Yang, C., Pan, Z., Gan, J., Xu, C., Zhao, M.,
and Schlenk, D. (2007) Enantioselectivity in estrogenic potential and
uptake of bifenthrin. EnViron. Sci. Technol. 41, 6124–6128.
(14) Jin, Y., Wang, W., Xu, C., Fu, Z., and Liu, W. (2008) Induction of
hepatic estrogen-responsive genes expression by permethrin enanti-
omers in adult male zebrafish. Aquat. Toxicol. 88, 146–152.
(15) Tyler, C., Beresford, N., van der Woning, M., Sumpter, J., and Thorpe,
K. (2000) Metabolism and environmental degradation of pyrethroid
insecticides produce compounds with endocrine activities. EnViron.
Toxicol. Chem. 19, 801–809.
(36) Gray, A. J., and Soderlund, D. M. (1985) Mammalian Toxicology of
Pyrethroids, in Insecticides (Huston, D. H., and Roberts, T. R., Eds.)
pp 193-248, John Wiley and Sons, New York.
(16) McCarthy, A., Thomson, B., Shaw, I., and Abell, A. (2006) Estro-
genicity of pyrethroid insecticide metabolites. J. EnViron. Monit. 8,
197–202.
(17) Gaughan, L. C., Unai, T., and Casida, J. E. (1977) Permethrin
metabolism in rats. J. Agric. Food Chem. 25, 9–17.
(18) Glickman, A. H., Shono, J. E., Casida, J. E., and Lech, J. J. (1979) In
vitro metabolism of permethrin isomers by carp and rainbow trout
liver microsomes. J. Agric. Food Chem. 27, 1038–1048.
(19) Negishi, E., Rand, C. L., and Jadhav, K. P. (1981) Selective carbon-
carbon bond formation via transition metal catalysis. 23. Highly
selective and convenient method for the synthesis of 1,5-enynes and
1,5-dienes by the reaction of 1,3-dilithiopropargyl phenyl sulfide with
allylic halides. J. Org. Chem. 46, 5041–5044.
(20) McCarthy, A. R., Thomson, B. M., Shaw, I. C., and Abell, A. D.
(2006) Estrogenicity of pyrethroid insecticide metabolites. J. EnViron.
Monit. 8, 197–202.
(21) Liu, W., Gan, J., and Qin, S. (2005) Separation and aquatic toxicity
of enantiomers of synthetic pyrethroid insecticides. Chirality 17,
S127-S133.
(22) Carlson, D. B., and Williams, D. E. (1999) Sex-specific vitellogenin
production in immature rainbow trout. EnViron. Toxicol. Chem. 18,
2361–2363.
(37) Schulz, R., and Stehle, S. (2008) Synthetic Pyrethroids in Agricultural
Surface Waters: Exposure, Effects and Risk Mitigation, in Synthetic
Pyrethroids: Occurrence and BehaVior in Aquatic EnVironments (Gan,
J., Spurlock, F., Hendley, P., and Weston, D., Eds.) ACS Symposium
Series 991, pp171-202, American Chemical Society, Washington, DC.
(38) Spehar, R. L., Danny, K., Tanner, D. K., and Nordling, B. R. (1983)
Toxicity of the synthetic pyrethroids, permethrin and AC 222, 705
and their accumulation in early life stages of fathead minnows and
snails. Aquat. Toxicol. 3, 171–182.
(39) Saha, A. K., Rapoport, H., and Schultz, P. (1989) 1,1′-Carbonylbis(3-
methylimidazolium) triflate: an efficient reagent for aminoacylations.
J. Am. Chem. Soc. 111, 4856–4859.
(40) Unai, T., and Casida, J. E. (1977) Synthesis of isomeric 3-(2,2-
dichlorovinyl)-2-hydroxymethyl-2 methylcyclopropanecarboxylic acids
and other permethrin metabolites. J. Agric. Food Chem. 25, 979–987.
(41) Nillos, M. G. (2009) Stereoselectivity in Modern-Use Chiral Pesticides:
Enantiomer-Specific Ecotoxicological Assessment of Chiral Organo-
phosprus, Fipronil and Pyrethroid Insecticides, Ph.D. Thesis, University
of California, Riverside, Riverside, CA.
(23) Lavado, R., Loyo-Rosales, J. E., Floyd, E., Kolodziej, E. P., Snyder,
S. A., Sedlak, D. L., and Schlenk, D. (2009) Site-specific profiles of
TX100167X