Paper
Organic & Biomolecular Chemistry
scaffold through the Rh-carbenoid mediated reaction between
N-o-alkylamino benzoylbenzotriazoles and aryl diazoacetates.
The method elegantly exploits the leaving group ability of the
benzotriazole moiety to lodge the carbonyl function in the pro-
ducts. The reaction takes place in aqueous medium and offers
7 Y. Sun and R. Fan, Chem. Commun., 2010, 46, 6834–6836.
8 M. Shimizu, Y. Takao, H. Katsurayama and I. Mizota, Asian
J. Org. Chem., 2013, 2, 130–134.
9 Z. Xia, J. Hu, Y.-Q. Gao, Q. Yao and W. Xie, Chem.
Commun., 2017, 53, 7485–7488.
a wide substrate scope in terms of both the reaction partners. 10 R. O. Torres-Ochoa, T. Buyck, Q. Wang and J. Zhu, Angew.
Furthermore, this methodology offers a clean reaction since Chem., Int. Ed., 2018, 57, 5679–5683.
other than nitrogen gas, the only byproduct is benzotriazole 11 (a) L. Li, M. Han, M. Xiao and Z. Xie, Synlett, 2011, 1727–
which was isolated and reused for preparing the starting
material.
1730; (b) R. Dalpozzo, G. Bartoli and G. Bencivenni, Chem.
Soc. Rev., 2012, 41, 7247–7290; (c) M. Rueping, R. Rasappan
and S. Raja, Helv. Chim. Acta, 2012, 95, 2296–2303;
(d) C.-Y. Jin, Y. Wang, Y.-Z. Liu, C. Shen and P.-F. Xu,
J. Org. Chem., 2012, 77, 11307–11312; (e) A. Parra, R. Alfaro,
L. Marzo, A. Moreno-Carrasco, J. L. G. Ruano and
J. Alemán, Chem. Commun., 2012, 48, 9759–9761;
(f) Y.-L. Zhao, Y. Wang, J. Cao, Y.-M. Liang and P.-F. Xu,
Org. Lett., 2014, 16, 2438–2441; (g) T.-G. Chen, P. Fang,
X.-L. Hou and L.-X. Dai, Synthesis, 2015, 134–140;
(h) R. Dalpozzo, Adv. Synth. Catal., 2017, 359, 1772–1810.
12 (a) Q. Yin and S.-L. You, Chem. Sci., 2011, 2, 1344–1348;
(b) M. Rueping, S. Raja and A. Núñez, Adv. Synth. Catal.,
2011, 353, 563–568.
Conflicts of interest
There are no conflicts to declare.
Acknowledgements
LD and RS thank the CSIR, New Delhi and DST, New Delhi,
respectively for the Ph. D. and project fellowships. We thank
the SAIF division of CSIR-CDRI for the analytical support.
CDRI Communication No: 9775.
13 For selected reviews on X–H insertion reactions, see:
(a) Z. Zhang and J. Wang, Tetrahedron, 2008, 64, 6577–
6605; (b) S.-F. Zhu and Q.-L. Zhou, Acc. Chem. Res., 2012,
45, 1365–1377; (c) D. Gillingham and N. Fei, Chem. Soc.
Rev., 2013, 42, 4918–4931; (d) A. Ford, H. Miel, A. Ring,
C. N. Slattery, A. R. Maguire and M. A. McKervey, Chem.
Rev., 2015, 115, 9981–10080.
Notes and references
1 (a) C. Niemann and J. W. Kessel, J. Org. Chem., 1966, 31,
2265–2269; (b) D. L. Boger, J. A. McKie, T. Nishi and
T. Ogiku, J. Am. Chem. Soc., 1997, 119, 311–325;
(c) H. Takayama, H. Ishikawa, M. Kurihara, M. Kitajima, 14 For recent examples of N–H and O–H Insertion reactions:
N. Aimi, D. Ponglux, F. Koyama, K. Matsumoto,
T. Moriyama, L. T. Yamamoto, K. Watanabe, T. Murayama
and S. Horie, J. Med. Chem., 2002, 45, 1949–1956;
(d) R. M. Williams and R. J. Cox, Acc. Chem. Res., 2003, 36,
127–139; (e) B.-Q. Tang, W.-J. Wang, X.-J. Huang, G.-Q. Li,
L. Wang, R.-W. Jiang, T.-T. Yang, L. Shi, X.-Q. Zhang and
W.-C. Ye, J. Nat. Prod., 2014, 77, 1839–1846.
2 (a) K. Higuchi, Y. Sato, M. Tsuchimochi, K. Sugiura,
M. Hatori and T. Kawasaki, Org. Lett., 2009, 11, 197–199;
(b) A. Karadeolian and M. A. Kerr, J. Org. Chem., 2010, 75,
6830–6841; (c) B. N. Reddy and C. V. Ramana, Chem.
Commun., 2013, 49, 9767–9769; (d) S. Han and
(a) Z. Wang, X. Bi, Y. Liang, P. Liao and D. Dong, Chem.
Commun., 2014, 50, 3976–3978; (b) X. Xu, C. Li, Z. Tao and
Y. Pan, Adv. Synth. Catal., 2015, 357, 3341–3345;
(c) W. W. Tan and N. Yoshikai, Chem. Sci., 2015, 6, 6448–
6455; (d) W. Yuan, L. Eriksson and K. J. Szabý, Angew.
Chem., Int. Ed., 2016, 55, 8410–8415; (e) R. P. Pandit,
S. H. Kim and Y. R. Lee, Adv. Synth. Catal., 2016, 358, 3586–
3599; (f) O. A. Davis, R. A. Croft and J. A. Bull, J. Org.
Chem., 2016, 81, 11477–11488; (g) Z.-S. Chen, X.-Y. Huang,
L.-H. Chen, J.-M. Gao and K. Ji, ACS Catal., 2017, 7, 7902–7907;
(h) A. C. Hunter, S. C. Schlitzer, J. C. Stevens, B. Almutwalli and
I. Sharma, J. Org. Chem., 2018, 83, 2744–2752.
M. Movassaghi, J. Am. Chem. Soc., 2011, 133, 10768–10771; 15 P.-X. Zhou, Z.-Z. Zhou, Z.-S. Chen, Y.-Y. Ye, L.-B. Zhao,
(e) X. B. Qi, H. L. Bao and U. K. Tambar, J. Am. Chem. Soc.,
2011, 133, 10050–10053; (f) Y. H. Liu and
Y.-F. Yang, X.-F. Xia, J.-Y. Luoa and Y.-M. Liang, Chem.
Commun., 2013, 49, 561–563.
W. W. McWhorter, J. Am. Chem. Soc., 2003, 125, 4240–4252; 16 (a) A. R. Katritzky, A. Pastor, M. Voronkov and
(g) C. Y. Wang, Z. L. Wang, X. N. Xie, X. T. Yao, G. Li and
L. S. Zu, Org. Lett., 2017, 19, 1828–1830.
3 P. N. Wyrembak and A. D. Hamilton, J. Am. Chem. Soc.,
2009, 131, 4566–4567.
4 A. Wetzel and F. Gagosz, Angew. Chem., Int. Ed., 2011, 50,
7354–7358.
5 W. Ding, Q.-Q. Zhou, J. Xuan, T.-R. Li, L.-Q. Lu and
W.-J. Xiao, Tetrahedron Lett., 2014, 55, 4648–4652.
D. Tymoshenko, J. Comb. Chem., 2001, 3, 167–170;
(b) A. R. Katritzky and B. V. Rogovoy, Chem. – Eur. J., 2003,
9, 4586–4593; (c) M. Li, B. Zhang and Y. Gu, Green Chem.,
2012, 14, 2421–2428; (d) A. K. Chaturvedi and N. Rastogi,
Synthesis, 2015, 47, 249–255; (e) M. M. D. Pramanik and
N. Rastogi, Org. Biomol. Chem., 2016, 14, 1239–1243;
(f) A. K. Chaturvedi and N. Rastogi, J. Org. Chem., 2016, 81,
3303–3312.
6 K. Okuma, N. Matsunaga, N. Nagahora, K. Shiojia and 17 The use of o-amino benzoylbenzotriazole in the reaction
Y. Yokomori, Chem. Commun., 2011, 47, 5822–5824.
resulted into a complex mixture of products, whereas the
138 | Org. Biomol. Chem., 2019, 17, 135–139
This journal is © The Royal Society of Chemistry 2019