Organic Letters
Letter
Perkin Trans. 1 1975, 1, 641−644. (c) Kitson, R. R. A.; Taylor, R. J.
K.; Wood, J. L. Org. Lett. 2009, 11, 5338−5341. (d) Kitson, R. R. A.;
Millemaggi, A.; Taylor, R. J. K. Angew. Chem., Int. Ed. 2009, 48,
9426−9451. (e) Nagendiran, A.; Verho, O.; Haller, C.; Johnston, E.
Scheme 7. Probable Mechanism
̈
V.; Backvall, J.-E. J. Org. Chem. 2014, 79, 1399−1405.
(2) For selected examples, see: (a) Eagan, J. M.; Hori, M.; Wu, J.;
Kanyiva, K. S.; Snyder, S. A. Angew. Chem., Int. Ed. 2015, 54, 7842−
7846. (b) Rao, Y. S. Chem. Rev. 1976, 76, 625−694. (c) Wang, Y.-G.;
Wachi, M.; Kobayashi, Y. Synlett 2006, 2006, 0481−0483. (d) Reddy,
R. S.; Saravanan, K.; Kumar, P. Tetrahedron 1998, 54, 6553−6564.
(3) Kelly, T. R.; Bell, S. H.; Ohashi, N.; Armstrong-Chong, R. J. J.
Am. Chem. Soc. 1988, 110, 6471−6480.
(4) (a) Pandey, R. C.; Toussaint, M. W.; Stroshane, R. M.; Kalita, C.
C.; Aszalos, A. A.; Garretson, A. A.; Wei, T. T.; Byrne, K. M.;
Stroshane, R. M.; White, R. J. J. Antibiot. 1981, 34, 1389−1401.
(b) Misra, R.; Pandey, R. C.; Silverton, J. V. J. Am. Chem. Soc. 1982,
104, 4478−4479.
(5) (a) Chen, P.-h.; Xu, T.; Dong, G. Angew. Chem., Int. Ed. 2014,
53, 1674−1678. (b) Xu, T.; Savage, N. A.; Dong, G. Angew. Chem.,
Int. Ed. 2014, 53, 1891−1895. (c) Lu, G.; Fang, C.; Xu, T.; Dong, G.;
Liu, P. J. Am. Chem. Soc. 2015, 137, 8274−8283. (d) Shiba, T.;
Kurahashi, T.; Matsubara, S. J. Am. Chem. Soc. 2013, 135, 13636−
13639. (e) Kajita, Y.; Matsubara, S.; Kurahashi, T. J. Am. Chem. Soc.
2008, 130, 6058−6059. (f) Kajita, Y.; Kurahashi, T.; Matsubara, S. J.
Am. Chem. Soc. 2008, 130, 17226−17227.
activation, alkyne insertion, intramolecular cyclization, and
decarbonylation, providing good yields of alkylidene phthalides
that are the key intermediates for the synthesis of biologically
important compounds.
(6) Kaishap, P. P.; Duarah, G.; Sarma, B.; Chetia, D.; Gogoi, S.
Angew. Chem., Int. Ed. 2018, 57, 456−460.
(7) (a) Prakash, R.; Bora, B. R.; Boruah, R. C.; Gogoi, S. Org. Lett.
2018, 20, 2297−2300. (b) Baruah, S.; Saikia, P.; Duarah, G.; Gogoi, S.
Org. Lett. 2018, 20, 3753−3757.
(8) Bouyssi, D.; Balme, G. Synlett 2001, 2001, 1191−1193.
(9) (a) Zhang, G.; Yu, H.; Qin, G.; Huang, H. Chem. Commun.
2014, 50, 4331−4334. (b) Duarah, G.; Kaishap, P. P.; Sarma, B.;
Gogoi, S. Chem.Eur. J. 2018, 24, 10196−10200. (c) Huestis, M. P.;
Chan, L.; Stuart, D. R.; Fagnou, K. Angew. Chem., Int. Ed. 2011, 50,
1338−1341. (d) Stuart, D. R.; Alsabeh, P.; Kuhn, M.; Fagnou, K. J.
Am. Chem. Soc. 2010, 132, 18326−18339.
(10) CCDC 1547365 contains the crystallographic data of 3aa.
(11) (a) Feigl, F.; Anger, V. Spot Tests in Inorganic Analysis, 6th ed.;
Elsevier: Amsterdam, 1972; pp 168−169. (b) Verma, A.; Kumar, S.
Org. Lett. 2016, 18, 4388−4391.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
Experimental procedures, spectroscopic data, and copies
of 1H NMR, 13C NMR, and HRMS spectra of
synthesized compounds (PDF)
Accession Codes
CCDC 1547365 contains the supplementary crystallographic
data for this paper. These data can be obtained free of charge
bridge Crystallographic Data Centre, 12 Union Road,
Cambridge CB2 1EZ, UK; fax: +44 1223 336033.
AUTHOR INFORMATION
Corresponding Author
■
ORCID
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
The authors thank SERB and CSIR New Delhi for financially
supporting us via the GPP-0303 (YSS/2014/001018) and
OLP-2011 projects. S. Borthakur thanks CSIR for the senior
research fellowship. The authors are grateful to the Director of
CSIR-NEIST for his keen interest.
REFERENCES
■
(1) (a) Krafft, G. A.; Katzenellenbogen, J. A. J. Am. Chem. Soc. 1981,
103, 5459−5466. (b) Knight, D. W.; Pattenden, G. J. Chem. Soc.,
D
Org. Lett. XXXX, XXX, XXX−XXX