4442
G. Venkata Ramana, B. Venkateswara Rao / Tetrahedron Letters 47 (2006) 4441–4443
O
HO
O
O
O
O
TBDPSO
d
TBDPSO
c
OH
HO
HO
HO
b
a
+
5
HO
O
AcO
O
O
O
O
O
O
AcO
O
O
O
8
7
6
5
4
O
O
O
HO
OH
TBDPSO
f
TBDPSO
e
i
h
8
H
R1O
O
O
O
O
O
O
O
O
O
MOMO
MOMO
R1=H
13
10
11
9
12
g
1
R =MOM
O
O
OH
j
O
OH
OH
OH
k
l
O
O
O
OMOM
MOMO
3
14
15
Scheme 1. Reagents and conditions: (a) (1) CH2@CHMgBr, THF, ꢁ78 °C to rt, 3 h, 75%; (2) NaIO4, CH2Cl2–H2O (1:1), 0 °C to rt, 2 h, 80%; (3)
K2CO3, 37% CH2O, MeOH, 80 °C, 36 h, 85%; (b) Ac2O, DIPEA, CH2Cl2, ꢁ78 °C, 1 h, 56%; (c) TBDPS–Cl, imidazole, CH2Cl2, 0 °C to rt, 6 h, 73%;
(d) NaOMe (4 equiv), MeOH, 0 °C to rt, 12 h, (40% for 8, 38% for 5); (e) (COCl)2, DMSO, Et3N, CH2Cl2, ꢁ78 °C, 3 h; (f) MeMgI, ether, ꢁ78 °C,
3 h, (60% for two steps); (g) MOM–Cl, DIPEA, TBAI (0.1 equiv), CH2Cl2, 0 °C to rt, 48 h, 81%; (h) TBAF, THF, 0 °C to rt, 4 h, 88%; (i)
t
CH3PPh3þIꢁ, BuOK, 18-crown-6, THF, 0 °C to rt, 24 h, 34%; (j) Grubbs’ first-generation olefin metathesis catalyst (0.1 equiv), CH2Cl2, rt, 24 h,
79%; (k) Tempo free radical (cat.), KBr, NaOCl, NaHCO3, EtOAc–toluene–water (1:1:0.2), 0 °C, 1 h, 65%; (l) 90% TFA, 0 °C, 2 h, 30%.
Acknowledgements
H
O
H
TBDPSO
HO
H
G.V.R. thanks the CSIR, New Delhi, for a research
fellowship (SRF). We also thank IFCPAR for their
financial support, Dr. J. S. Yadav and Dr. A. C. Kunwar
for their support and encouragement.
O
O
Figure 2.
References and notes
1. (a) Bickley, J. F.; Roberts, S. M.; Santoro, M. G.; Snape, T.
J. Tetrahedron 2004, 60, 2569–2576; (b) Tilo, L.; Jurgen, S.;
Andrea, P.; Norbert, A.; Ludger, W. Phytochem. 2004, 65,
1061–1071; (c) Masami, I.; Shinji, T.; Jun’ichi, K. Tetra-
hedron Lett. 1993, 34, 3749–3750.
2. Matsumoto, T.; Ishiyama, A.; Yamaguchi, Y.; Masuma,
R.; Ui, H.; Shiomi, K.; Yamada, H.; Omura, S. J. Antibiot.
1999, 52, 754–757.
Nu
Mg
O
O
TBDPSO
H
O
O
O
H
O
O
OTBDPS
O
Mg
Nu
3. Sugahara, T.; Fukuda, H.; Iwabuchi, Y. J. Org. Chem.
2004, 69, 1744–1747.
Figure 3. Transition state leading to the major diastereoisomer of 10.
4. Ohira, S.; Fujiwara, H.; Maeda, K.; Habara, M.; Sakae-
dani, N.; Akiyama, M.; Kuboki, A. Tetrahedron Lett. 2004,
45, 1639–1641.
5. Ramana, G. V.; Rao, B. V. Tetrahedron Lett. 2003, 44,
5103–5105.
6. (a) Jeong, A. L.; Hyung, R. M.; Hea, O. K.; Kyung, R. K.;
Kang, M. L.; Bum, T. K.; Ki, J. H.; Moon, W. C.;
Kenneth, A. J.; Jeong, L. S. J. Org. Chem. 2005, 70, 5006–
5013; (b) Hyung, R. M.; Hea, O. K.; Kang, M. L.; Moon,
W. C.; Joong, H. K.; Jeong, L. S. Org. Lett. 2002, 4, 3501–
3503; (c) Ho, P.-T. Can. J. Chem. 1979, 57, 381–383; (d)
Ho, P.-T. Tetrahedron Lett. 1978, 19, 1623–1626; (e) Shing,
T. K. M.; Elsey, D. A.; Gillhouley, J. G. J. Chem. Soc.,
Chem. Commun. 1989, 1280–1282.
data for (+/ꢁ)-15.3 Removal of the MOM and
acetonide protecting groups in 15 with 90% TFA3 com-
pleted a stereoselective synthesis of 6-epi-pentenocin B 3,
whose spectral9 and physical data were in agreement
23
with the reported values, ½aꢀD +84.15 (c 0.16, MeOH)
lit.:4 [a]D ꢁ89 (c 0.42, MeOH for its C-6 enantiomer).
In summary, a new approach for the construction of the
pentenocin skeleton has been utilized for the synthesis of
6-epi-pentenocin B 3.