F. A. Attabi and S. M. Eldin • Synthesis of Pyrimidine Derivatives____________________________________________793
Table II. (continued)
*H NMR (öppm)
IR ( c m 1)
Comp.
17b
1.0(s, 3H, CH-,); 1.9(s, 3H, COCH3); 3.2(s, 1H, py-
rimidine H-5); 6.1(s, br., 2H, two NH) and 7.0-
7.9(m, 5H, ArH’s).
3200, 3195(NH); 3079 aromatic CH); 2975 (sat.
CH); 1717(ketone C =0); 1692(C=0 ring);
1612 (C=N) and 1600(C=C).
1.0(s, 3H, CH3); 1.3(t, 3H, CH^CH2-); 3.1(s, 1H,
pyrimidine H-5); 3.5(q, 2H, CH3C //2-); 5.9(s, br.,
2H, two NH) and 6.9-7.8(m , 5H, ArH’s).
1.9(s, 2H, -COCHt ); 3.2(s, 1H, pyrimidine H-5);
5.4(s, br., 3H, three NH); 7.0-7.9(m , 5H, ArH’s)
and ll.l(s , br., 1H, COOH).
1.0(t, 3H, C //3CH2); 2.1 (s, 2H, -COCH2-); 3.0(s,
1H, pyrimidine H-5); 3.4(q, 2H, CH3C //2-); 5.2(s,
br., 3H, three NH) and 7.1-8.2(m , 5H, ÄrH’s).
2.0(s, 2H, -COCH2-); 3.2(s, 1H, pyrimidine H-5);
4.9(s, br., 3H, three NH); 6.0(s, br., 2H, NH2) and
7.0-8.1(m , 5H, ArH’s).
17c
18a
18b
18c
19
3217, 3195(NH); 3078 aromatic CH); 2977 (sat.
CH); 1737(ketone C =0); 1694(C=0 ring);
1613 (C=N) and 1603(C=C).
3400-2397(H-bonded OH); 1708(acid C=0);
1678(C=0 ring); 1611 (C=N) and 1601(C=C).
3320, 3276, 3193(NH); 3072(aromatic CH);
2978(sat., CH); 1732(ester C =0); 1689(C=0
ring); 1619(C=N) and 1603(C=C).
3340, 3310, 3226; 3189 (NH2 and NH); 3078
(arom- atic CH); 2977(sat., CH); 1690(C=0
ring); 1612 (C=N) and 1600(C=C).
3222, 3189 (NH); 3082 (aromatic CH);
2979(sat., CH); 1695(C=0); 1610 (C=N) and
1601(C=C).
2.1(s, 2H, -COCH2-); 3.2(s, 1H, pyrimidine H-5);
5.8(s, br., 2H, two NH) and 6.9-7.8(m , 5H,
ArH’s).
2.1(s, 2H, -COCHt ); 3.2(s, 1H, pyrimidine H-5);
6.0(s, br., 2H, two NH) and 6.9-7.8(m , 5H,
ArH’s).
21a
3197 (NH); 3077(aromatic CH); 1688(C=0);
1617 (C=N) and 1600(C=C).
21b
22a
22b
3188(NH); 2975(sat„ CH); 3079(aromatic
CH); 1690(C=0); 1615 (C=N) and 1604(C=C).
3182(NH); 3077(aromatic CH); 1692(C=0);
1617 (C=N) and 1601(C=C).
3190(NH); 3069(aromatic CH); 2978(sat„
CH); 1690 (C =0); 1615 (C=N) and 1600
(C=C).
l.l(s, 3H, CH3); 2.9(s, 1H, pyrimidine H-5) and
7.0-8.2(m , 6H, NH and ArH’s).
3.1(s, 1H, pyrimidine H-5); 4.2(s, 2H, -COCH2-);
5.3(s, br., 1H, NH) and 7.0-8.1(m , 10H, ArH’s).
1.0(s, 3H, CH3); 3.2(s, 1H, pyrimidine H-5); 4.4(s,
2H, -COCH2-); 5.5(S, br., 1H, NH) and 6.9-7.8(m ,
5H, ArH’s).
25
3379, 3282, 3190(NH2 NH) ; 3075(aromatic
CH); 1689 (C =0); 1617 (C=N) and 1600
(C=C).
2.8(s, 1H, pyrimidine H-5); 3.4(s, 1H, pyrazole H-
4); 4.8(s, br., 2H, two NH); 5.6(s, br., 2H, NH2)
and 7.0-7.9(m , 5H, ArH’s).
27a
27b
27c
3212, 3182(NH) ; 3070(aromatic CH); 1693
(C =0); 1612 (C=N) and 1600(C=C).
3.1(s, 1H, pyrimidine H-5); 4.9(s, br., 1H, pyrimi-
dine NH); 5.4(s, 1H, -CH=N-); 6.9-8.1(m , 10H,
ArH’s) and 9.8(s, br., 1H, NH, -NH-N=).
3.0(s, 1H, pyrimidine H-5); 5.1(s, br., 1H, pyrimi-
dine NH); 5.6(s, 1H, -CH=N-); 7.0-7.9(m , 9H,
ArH’s) and 9.9(s, br., 1H, NH, -NH-N=).
3.1(s, 1H, pyrimidine H-5); 4.8(s, br., 1H, pyrimi-
dine NH); 5.5(s, 1H, -CH=N-); 6.5-7.7(m , 8H,
furyl and ArH’s) and 10.1(s, br., 1H, NH, -NH-
3219, 3180(NH); 3079(aromatic CH); 1692
(C =0); 1616 (C=N) and 1600(C=C).
3223, 3193(NH); 3082(aromatic CH); 1689
(C =0); 1615 (C=N) and 1602(C=C).
N=).
3.0(s, 1H, pyrimidine H-5); 5.6(s, br., 2H, two NH)
and 6.9-7.8(m , 5H, ArH’s).
3.2(s, 1H, pyrimidine H-5) and 6.9-8.1(m , 7H,
two NH and ArH’s).
30a
30b
3223, 3187(NH); 3079(aromatic CH); 1695
(C =0); 1613 (C=N) and 1602(C=C).
3217, 3195(NH); 3082(aromatic CH); 1689
(C =0); 1615(C=N) and 1603(C=C).
Compound 5 reacted with chloroacetone (10a),
ponding 2-(3,,5,-dimethyl-l’-pyrazolyl)-6-phenyl-
pyrimidine-4-one (15) via the non-isolable inter- a-chloroacetylacetone (10 b) and ethyl a-chloroa-
cetoacetate (10 c) to afford compounds 16a-c,
respectively, via dehydrochlorination. Compounds
16a-c were cyclized in ethanolic sodium ethoxide
to afford the corresponding pyrimido[2,l-c]-l,2,4-
triazines 17a-c, respectively. Structures 16a-c and
mediate 14. The reaction is most probably
proceeded through dehydration in two successive
steps. By considering the data of IR, ‘H NMR
and elemental analyses, structure 15 was con-
firmed. Moreover, its mass spectrum gave m/z=
266, corresponding to the molecular weight of a 17a-c were established based on IR, ‘H NMR and
molecular formula C1 5
structure (cf. Chart 2).
H
1 4 N40 of the assigned elemental analyses (cf. Tables I and II). Moreover,
the mass spectra of 16a-c gave m /z-258, 300 and
Brought to you by | New York University Bobst Library Technical Services
Authenticated
Download Date | 6/24/15 4:01 PM