RESEARCH ARTICLE
201.9, 136.3, 128.5, 126.3, 110.6, 95.8, 32.5, 29.9, 25.8, 22.5, 14.0,
12.3; MS (70 ev, EI) m/z (%): 200 (M+, 2.60), 129 (100); IR (neat, cm-1)
2960, 2929, 1947, 1598, 1495, 1459, 1405, 1377, 1326, 1103, 1071,
1028; HRMS calcd. for C15H20 (M+): 200.1565; Found: 200.1567.
molecule of Gorlos-Phos, Int 4 may readily undergo β-H
elimination to form Int 5 (see Int 2 in Scheme 5), which
underwent reductive elimination to yield the β-H elimination-
based coupling product 3.
Acknowledgements
Financial supports from the National Natural Science Foundation
of China (Grant No. 21690063) and the National Basic Research
Program (2015CB856600) are greatly appreciated. We thank Mr
Yizhan Zhai in this group for reproducing the preparation of 2d,
2n, and 3s.
Keywords: Negishi Coupling • Palladium • SPhos • Gorlos-Phos
• SAESI-MS/MS
[1]
[2]
For a most recent monograph, see: Modern Allene Chemistry, ed. N.
Krause and A. S. K. Hashmi, Wiley-VCH, Weinheim, 2004, vols 1 and 2.
For selected reviews, see: a) S. Ma, Acc. Chem. Res. 2003, 36, 701. b)
S. Ma, Chem. Rev. 2005, 105, 2829. c) M. Brasholz, H. U. Reissig, R.
Zimmer, Acc. Chem. Res. 2009, 42, 45. d) S. Ma, Acc. Chem. Res.
2009, 42, 1679. e) S. Yu, S. Ma, Angew. Chem. Int. Ed. 2012, 51, 3074.
f) T. Lu, Z. Lu, Z. Ma, Y. Zhang, R. Hsung, Chem. Rev. 2013, 113,
4862. g) J. Ye, S. Ma, Acc. Chem. Res. 2014, 47, 989. h) F. López, J.
Mascareñas, Chem. Soc. Rev. 2014, 43, 2904.
Scheme 7. Proposed reaction pathway for ligand-controlled Negishi coupling
[3]
For reviews on the synthesis of allenes, see: a) K. Brummond, J.
DeForrest, Synthesis. 2007, 795. b) M. Ogasawara, Tetrahedron:
Asymmetry. 2009, 20, 259. c) S. Yu, S. Ma, Chem. Commun. 2011, 47,
5384. d) R. Neff, D. Frantz, ACS Catal. 2014, 4, 519. e) J. Ye, S. Ma,
Org. Chem. Front. 2014, 1, 1210.
Conclusion
In summary, as a general solution for capturing the reactive
organometallic intermediates, SAESI-MS/MS has been
successfully applied and the nature of the ligand effect has been
unveiled in the highly selective Negishi couplings of diethyl zinc
with propargylic carbonates affording different multiple-
substituted allenes: The selective formation of ethylation or β-H
elimination-based products could be achieved respectively
under mild conditions and different functional groups are well-
tolerated by applying SPhos or Gorlos-Phos as the ligand.
Currently, we are working on applying this protocol to dialkyl
zincs with an alkyl group beyond ethyl group. Further studies in
this area are being actively pursued in our laboratory.
[4] For some recent reviews on Negishi coupling, see: a) E. I. Negishi, Q. Hu,
Z. Huang, M. Qian, G. Wang, Aldrichim. Acta. 2005, 38, 71. b) C.
Valente, M. E. Belowich, N. Hadei, M. G. Organ, Chem. Eur. J. 2010,
16, 4343. c) M. Heravi, E. Hashemi, N. Nazari, Mol. Divers. 2014, 18,
441. d) S. Huo, R. Mroz, J. Carroll, Org. Chem. Front. 2015, 2, 416. e)
D. Haas, J. Hammann, R. Greiner, P. Knochel, ACS Catal. 2016, 6,
1540.
[5]
For synthesis of allenes via arylzinc compounds, see: a) E. Elsevier, P.
Stehouwer, H. Westmijze, P. Vermeer, J. Org. Chem. 1983, 48, 1103.
b) E. Elsevier, P. Vermeer, J. Org. Chem. 1985, 50, 3042. c) T. Konno,
M. Tanikawa, T. Ishihara, H. Yamanaka, Chem. Lett. 2000, 29, 1360. d)
J. Terao, F. Bando, N. Kambe, Chem. Commun. 2009, 7336.
For synthesis of allenes via alkenylzinc compounds, see: a) H. Kleijn, H.
Westmijze, J. Meijer, P. Vermeer, Recl. Trav. Chim. Pays-Bas, 1983,
102, 378. b) E. Keinan, E. Bosch, E. J. Org. Chem. 1986, 51, 4006. c)
C. Tucker, B. Greve, W. Klein, P. Knochel, Organometallics. 1994, 13,
94. d) S. Ma, G. Wang, Angew. Chem. Int. Ed. 2003, 42, 4215; Angew.
Chem. 2003, 113, 4347.
[6]
Experimental Section
To a 50 mL oven-dried Schlenk tube were added Pd(OAc)2 (11.4 mg,
0.05 mmol), SPhos (30.7 mg, 0.075 mmol), and 2 mL of anhydrous DMF
sequentially under Ar atmosphere. The resulting mixture was stirred at rt
for 30 minutes followed by the addition of 1a (246.6 mg, 1.0 mmol), 4 mL
of DMF, and Et2Zn (1.5 M in toluene, 1.35 mL, 2.0 mmol) sequentially.
After being stirred at 25 oC for 4 h, the resulting mixture was quenched
with 10 mL of an aqueous solution of 3 M HCl and extracted with ethyl
ether (10 mL × 3). The combined organic layer was washed with 30 mL
of brine, dried over anhydrous Na2SO4, filtrated, and concentrated. The
crude product was purified by column chromatography on silica gel
(eluent: petroleum ether) to afford 2a (170.7 mg, 85%) as a liquid: 1H
NMR (400 MHz, CDCl3) δ = 7.32-7.24 (m, 4 H, ArH), 7.19-7.13 (m, 1 H,
ArH), 6.15 (quint, J = 3.2 Hz, 1 H, =CH), 2.16-2.00 (m, 4 H, 2×CH2), 1.52-
1.42 (m, 2 H, CH2), 1.39-1.29 (m, 2 H, CH2), 1.05 (t, J = 7.4 Hz, 3 H,
CH3), 0.88 (t, J = 7.4 Hz, 3 H, CH3); 13C NMR (100 MHz, CDCl3) δ =
[7]
For synthesis of allenes via alkynylzinc or allenylzinc compounds, see:
a) K. Ruitenberg, H. Kleijn, H. Westmijze, J. Meijer, P. Vermeer, Recl.
Trav. Chim. des Pays-Bas. 1982, 101, 405. b) W. Graaf, J. Boersma, G.
Koten. J. Organomet. Chem. 1989, 378, 115. c) S. Ma, A. Zhang, J.
Org. Chem. 1998, 63, 9601. d) S. Ma, Q. He, Angew. Chem. Int. Ed.
2004, 43, 988; Angew. Chem. 2004, 116, 1006. e) M. Qian, E. Negishi,
Tetrahedron. Lett. 2005, 46, 2927. f) J. Zhao, Y. Yu, S. Ma, Chem. Eur.
J. 2010, 16, 74. g) Y. Jian, Y. Wu, Org. Biomol. Chem. 2010, 8, 1905.
h) Y. Zhang, Y. Wu, Org. Biomol. Chem. 2010, 8, 4744.
[8]
K. Ruitenberg, H. Kleijn, C. Elsevier, J. Meijer, P. Vermeer, Tetrahedron.
Lett. 1981, 22, 1451.
[9]
R. Jana, T. Pathak, S. Sigman, Chem. Rev. 2011, 111, 1417.
a) P. Dixneuf, T. Guyot, M. Ness, S. Roberts, Chem. Commun. 1997,
2083. b) M. Shenglof, D. Gelman, B. Heymer, H. Schumann, G. A.
[10]
This article is protected by copyright. All rights reserved.