1864
M. Yoshida et al. / Tetrahedron Letters 45 (2004) 1861–1864
1
v/v); mp 28–29 °C; H NMR (300 MHz, CDCl3) d 1.15 (s,
6H), 3.76 (s, 3H), 4.07 (s, 2H), 4.46 (s, 2H), 4.91 (s, 1H),
6.82 (dt, J ¼ 9:3 and 2.8 Hz, 2H), 6.89 (dt, J ¼ 9:3 and
2.8 Hz, 2H); 13C NMR (75 MHz, CDCl3) d 27.6, 43.0,
55.6, 64.2, 83.1, 110.5, 114.6, 116.1, 152.3, 152.9, 154.3; IR
(neat) 2866, 1506, 1229 cmꢀ1; MS (EI) m=z (relative
intensity) 234 [Mþ, 75], 219 (4), 111 (46), 96 (4), 81 (9),
65 (3), 51 (2); HRMS (EI) calcd for C14H18O3 [Mþ]
234.1256, was found to be 234.1275.
M.Y.) and Scientific Research on Priority Areas (A)
from the Ministry of Education, Culture, Sports, Sci-
ence and Technology, Japan. We are grateful to Prof.
Masahiko Yamaguchi for his generosity and helpful
discussions.
References and notes
7. Recently, Mori reported a similar type of palladium-
catalyzed reaction of propargylic carbonates with benzo-
ate leading to formation of substituted carbapenams. In
these reactions, nucleophilic benzoate reacts strongly with
the p-allylpalladium complex from a more hindered site
and produces a corresponding product having an exo-
olefin, and hence exhibiting different regioselectivity from
our result; see Ref. 3g.
1. Tsuji, J. Palladium Reagents and Catalysts: Innovations in
Organic Synthesis; Wiley: New York, 1995. p 453.
2. (a) Tsuji, J.; Minami, I. Acc. Chem. Res. 1987, 20, 140; (b)
Minami, I.; Yuhara, M.; Watanabe, H.; Tsuji, J. J.
Organomet. Chem. 1987, 334, 225; (c) Tsuji, J.; Mandai, T.
Angew. Chem. Int. Ed. Engl. 1995, 34, 2589.
3. (a) For recent examples of palladium-catalyzed reactions
of propargylic carbonates with nucleophiles, see: Four-
nier-Nguefack, C.; Lhoste, P.; Sinou, D. Synlett. 1996,
553; (b) Labrosse, J.-R.; Lhoste, P.; Sinou, D. Tetrahedron
Lett. 1999, 40, 9025; (c) Labrosse, J.- R.; Lhoste, P.;
Sinou, D. Org. Lett. 2000, 2, 527; (d) Kozawa, Y.; Mori,
M. Tetrahedron Lett. 2001, 42, 4869; (e) Kozawa, Y.;
Mori, M. Tetrahedron Lett. 2002, 43, 1499; (f) Damez, C.;
Labrosse, J.-R.; Lhoste, P.; Sinou, D. Tetrahedron Lett.
2003, 44, 557; (g) Kozawa, Y.; Mori, M. J. Org. Chem.
2003, 68, 8068.
4. Yoshida, M.; Nemoto, H.; Ihara, M. Tetrahedron Lett.
1999, 40, 583.
5. (a) Yoshida, M.; Ihara, M. Angew. Chem. Int. Ed. 2001,
40, 616; (b) Yoshida, M.; Fujita, M.; Ishii, T.; Ihara, M. J.
Am. Chem. Soc. 2003, 125, 4874; (c) Yoshida, M.; Fujita,
M.; Ihara, M. Org. Lett. 2003, 5, 3325.
6. General procedure for palladium-catalyzed reactions of
propargylic carbonates with phenols. Reaction of 1a with
2a (entry 5 in Table 1): To a stirred solution of propargylic
carbonate 1a (38.7 mg, 0.208 mmol) in dioxane (2 mL) we
added p-methoxyphenol (2a) (28.4 mg, 0.229 mmol),
Pd2(dba)3 Æ CHCl3 (10.8 mg, 10.4 lmol) and dppf (23 mg,
41.6 lmol) in a sealed tube at room temperature. The
reaction mixture was allowed to warm to 60 °C, and
stirring was continued for 17 h. After evaporation of the
solvent, the residue was chromatographed on silica gel
with AcOEt–hexane (2:98 v/v) as an eluent to produce 5-
phenoxymethyl-2,3-dihydrofuran 3aa (41 mg, 0.175 mmol,
84%) as colorless needles; Rf ¼ 0:70 (AcOEt–hexane ¼ 3:7
8. Tan, H.; Espenson, J. H. J. Mol. Cat. A 2000, 152, 83.
9. (a) Ogoshi, S.; Tsutsumi, K.; Kurosawa, H. J. Organomet.
Chem. 1995, 493, C19; (b) Tsutsumi, K.; Ogoshi, S.;
Nishiguchi, S.; Kurosawa, H. J. Am. Chem. Soc. 1998,
120, 1938; (c) Tsutsumi, K.; Kawase, T.; Kakiuchi, K.;
Ogoshi, S.; Okada, Y.; Kurosawa, H. Bull. Chem. Soc.
Jpn. 1999, 72, 2687; (d) Ogoshi, S.; Kurosawa, H. J. Synth.
Org. Chem. Jpn. 2003, 61, 14.
10. We previously observed the formation of phenoxy substi-
tuted dihydrofuran as a byproduct by the reaction of 4-
methoxycarbonyloxy-2-butyn-1-ol with phenol, see Refs.
5a and 5b.
11. It is generally believed that a monodentate ligand is not
suitable for the reaction of propargylic compounds with
soft nucleophiles (see Refs. 2c,3g and 9c). The obtained
result using monodentate PPh3 is therefore interesting in
view of this hypothesis, although the precise details of this
reaction mechanism are still unclear.
12. The structure of 3gl has been confirmed by the hydrolysis of
this product to form a known benzofuran-2-yl methanol.
ꢀ
13. Akermark, B.; Zetterberg, K.; Hansson, S.; Krakenberger,
B.; Vitagliano, A. J. Organomet. Chem. 1987, 335, 133.
14. For examples: (a) Schuda, P. F. Top. Curr. Chem. 1980,
91, 75; (b) Nore, P.; Honkanen, E. J. Heterocycl. Chem.
1980, 17, 985; (c) Middlemiss, D.; Drew, G. M.; Ross, B.
C.; Robertson, M. J.; Scopes, D. I. C.; Dowle, M. D.;
Akers, J.; Cardwell, K.; Clark, K. L.; Coote, S.; Elbred, C.
D.; Hamblett, J.; Hilditch, A.; Hirst, G. C.; Jack, T.;
Montana, J.; Panchal, T. A.; Paton, J. S. M.; Shah, P.;
Stuart, G.; Travers, A. Biomed. Chem. Lett. 1991, 1, 711.