324
A. Sorg et al.
LETTER
(8) With organoborons: (a) Roush, W. R.; Brown, B. B.;
Drozda, S. E. Tetrahedron Lett. 1988, 29, 3541. (b) Roush,
W. R.; Moriarty, K. J.; Brown, B. B. Tetrahedron Lett. 1990,
31, 6509. (c) Baldwin, J. E.; Chesworth, R.; Parker, J. S.;
Russell, A. T. Tetrahedron Lett. 1995, 36, 9551. (d) Roush,
W. R.; Koyama, K.; Curtin, M. L.; Moriarty, K. J. J. Am.
Chem. Soc. 1996, 118, 7502. (e) Roush, W. R.; Reilly, M.
L.; Koyama, K.; Brown, B. B. J. Org. Chem. 1997, 62,
8708. (f) Hanisch, I.; Brückner, R. Synlett 2000, 374.
(g) Shen, W. Synlett 2000, 737. (h) Frank, S. A.; Chen, H.;
Kunz, R. K.; Schnaderbeck, M. J.; Roush, W. R. Org. Lett.
2000, 17, 2691.
(9) With organotins: (a) Shen, W.; Wang, L. Tetrahedron Lett.
1998, 39, 7625. (b) Shen, W.; Wang, L. J. Org. Chem. 1999,
64, 8873.
(10) (a) Ma, S.; Xu, B.; Ni, B. J. Org. Chem. 2000, 65, 8532.
(b) Moller, B.; Undheim, K. Eur. J. Org. Chem. 2003, 332.
(11) (a) Brückner, R. Chem. Commun. 2001, 141. (b) Brückner,
R. Curr. Org. Chem. 2001, 5, 679.
(12) (a) Knight, D. W. Contemp. Org. Synth. 1994, 1, 287.
(b) Negishi, E.-i.; Kotora, M. Tetrahedron 1997, 53, 6707.
(c) Rossi, R.; Bellina, F. In Targets in Heterocyclic Systems:
Chemistry and Properties, Vol. 5; Attanasi, O. A.; Spinelli,
D., Eds.; Società Chimica Italiana: Roma, 2002, 169–198.
(d) Carter, N. B.; Nadany, A. E.; Sweeney, J. B. J. Chem.
Soc., Perkin Trans. 1 2002, 2324.
(13) Brückner, R.; Suffert, J. Synlett 1999, 657; and literature
cited therein.
(14) Dubois, E.; Beau, J.-M. J. Chem. Soc., Chem. Commun.
1990, 1191.
(24) Method: Gilman, H.; Rosenberg, S. D. J. Am. Chem. Soc.
1953, 75, 2507.
(25) (a) Farina, V. Pure Appl. Chem. 1996, 68, 73. (b)Entwistle,
D. A.; Jordan, S. I.; Montgomery, J.; Pattenden, G. Synthesis
1998, 603. (c) Amatore, C.; Bahsoun, A. A.; Jutand, A.;
Meyer, G.; Ntepe, A. N.; Ricard, L. J. Am. Chem. Soc. 2003,
125, 4212.
(26) The stereochemical problem was clarified by the (albeit
small) NOE observed at 2¢-H (d = 7.28 ppm in CDCl3) while
irradiating 4-H (d = 8.02 ppm) of the isomer labeled E-7.
The regiochemistry problem was solved by the occurrence
2
2
of two vicinal Csp -H/Csp -H couplings (J = 11.7 Hz, 15.8
Hz) for the olefinic protons of the isomer designated Z-13 as
contrasting with only one such coupling (J = 16.1 Hz) in the
isomer designated Z-17. The same answer came from the
occurrence of one olefinic 1H NMR singlet in Z-13 (d = 6.21
ppm) as opposed to two such singlets in Z-17 (d = 6.28 and
6.31 ppm).
(27) The differentiation of compound Z-9 from stereoisomer E-9
followed from irradiating 4-H (d = 7.87 ppm in CDCl3) and
the resulting increase of absorption by 2¢-H (d = 7.07 ppm).
Butenolide Z-14 was distinguished from the isomeric
structure iso-14 by the occurrence of two olefinic 3-bond
H,H couplings (J1¢,2¢ = 11.4 Hz, J3¢,2¢ = 15.8 Hz) rather than
one. Monocoupling product Z-16 was differentiated from
regioisomer iso-16 by an NOE experiment: irradiation of
ortho-H (d = 7.78–7.83 ppm in CDCl3) enhanced only the
absorption by 1¢-H (d = 6.36 ppm) and not by 1¢-H and 3-H
as expected for iso-16.
(28) (Z)-4-Bromo-5-(trans-3-phenyl-2-propenylidene)-2(5H)-
(15) Kim, W.-S.; Kim, H.-J.; Cho, C.-G. Tetrahedron Lett. 2002,
43, 9015.
(16) Trecourt, F.; Mallet, M.; Mongin, F.; Quéguiner, G.
Tetrahedron 1995, 51, 11743.
furanone (Z-14): 1H NMR (300 MHz, CDCl3): d = 6.30 (d,
J1¢,2¢ = 11.4 Hz, 1¢-H), 6.37 (s, 3-H), 6.93 (d, J3¢,2¢ = 15.8 Hz,
3¢-H), 7.25–7.41 (m, 2¢-H, 2 × meta-H, para-H), 7.50–7.53
(m, 2 × ortho-H). 13C NMR (125.7 MHz, CDCl3): d = 114.51
(C-1¢), 119.11 (C-3), 121.01 (C-2¢), 127.40 (2 × Cortho),
128.92 (2 × Cmeta), 129.41 (Cpara), 136.11 and 136.19 (C-4,
Cipso), 140.13 (C-3¢), 147.23 (C-5), 166.64 (C-2). Anal.
Calcd for C13H9BrO2 (276.5): C, 56.34; H, 3.27. Found: C,
56.36; H, 3.19.
(17) Wolff, L.; Rüdel, F. Liebigs Ann. 1896, 294, 183; Structural
assignments: Ref.19(2); ref.19b (Z-5).
(18) Manny, A. J.; Kjelleberg, S.; Kumar, N.; de Nys, R.; Read,
R. W.; Steinberg, P. Tetrahedron 1997, 51, 15813.
(19) (a) Koch, H.; Pirsch, J. Monatsh. Chem. 1962, 93, 661.
(b) Wells, P. R. Aust. J. Chem. 1963, 16, 165.
(29) (Z)-5-(1-Bromo-1-phenylmethylene)-2(5H)-furanone (Z-
11): 1H NMR (300 MHz, CDCl3): d = 6.31 (d, J3,4 = 5.6 Hz,
3-H), 7.41–7.49 (m, C6H5 and 4-H). 13C NMR (75.4 MHz,
CDCl3): d = 110.88 (C-1¢), 120.80 (C-3), 128.75 and 130.11
(2 × Cortho, 2 × Cmeta), 130.23 (Cpara), 135.39 (Cipso), 140.88
(C-4), 149.10 (C-5), 168.46 (C-2). Anal. Calcd for
C11H7BrO2 (250.5): C, 52.62; H, 2.81. Found: C, 52.66; H,
2.70.
(20) 5-(Dibromomethylene)-2(5H)-furanone (2): 3,5-
Dibromolevulinic acid (6; 4.77 g, 17.4 mmol), oleum (18
mL, 65% SO3), and concentrated H2SO4 (9 mL) were stirred
at 50–60 °C for 6 min. The solution was poured on ice and
extracted with CH2Cl2 (3 × 30 mL). The combined organic
extracts were dried (Na2SO4) and evaporated under reduced
pressure. After flash chromatography on silica gel22
(cyclohexane:EtOAc 15:1→5:1) compound 2 (1.22 g, 28%)
was obtained as a slightly yellow solid (mp 132–134 °C). 1H
NMR (300 MHz, CDCl3): d = 6.41 (d, J3,4 = 5.6 Hz, 3-H),
7.67 (d, J4,3 = 5.6 Hz, 4-H).
(21) (Z)-4-Bromo-5(bromomethylene)-2(5H)-furanone (Z-5):
3,5-Dibromolevulinic acid (6; 912 mg, 3.33 mmol) and
concentrated H2SO4 (20 mL) were stirred at r.t. for 20 min
and at 85 °C for 30 min. The solution was poured on ice and
extracted with CH2Cl2 (3 × 30 mL). The combined organic
extracts were dried (Na2SO4) and evaporated under reduced
pressure. After flash chromatography on silica gel22
(cyclohexane:EtOAc 15:1→5:1) compound Z-5 (346 mg,
41%) was obtained as a slightly yellow solid (mp 96–97 °C).
1H NMR (300 MHz, CDCl3): d = 6.41 (s, 1¢-H), 6.50 (s, 3-
H).
(30) (a) Uenishi, J.; Kawahama, R.; Shiga, Y.; Yonemitsu, O.
Tetrahedron Lett. 1996, 37, 6759. (b) Uenishi, J.;
Kawahama, R.; Yonemitsu, O.; Tsuji, J. J. Org. Chem. 1996,
61, 5716. (c) Uenishi, J.; Kawahama, R.; Yonemitsu, O.;
Tsuji, J. J. Org. Chem. 1998, 63, 8965. (d) Tietze, L. F.;
Nöbel, T.; Spescha, M. J. Am. Chem. Soc. 1998, 120, 8971.
(31) While we debrominated 1,1-dibromoolefin 2 using
Pd(PPh3)4 and HSnBu3 (→Z-10, Scheme 4) the same
reagents30 or variations thereof [Pd(PPh3)4/HSiEt3 or
HSi(SiMe3)3 or NH4HCO2; Pd(dba)2 or NiCl2(PPh3)2/
HSnBu3] failed to reduce 1,3-dibromodiene Z-5 due to
inertness (15 was not formed, Scheme 5).
(32) Method, albeit without sonication: (a) Villa, M. J.; Lete, E.;
Badia, D.; Dominguez, E. J. Chem. Res., Synop. 1987, 418.
(b) Farmer, E. H.; Healey, A. T. J. Chem. Soc. 1927, 1060.
(33) The C1¢ = Cg configuration of debromination product E-8
followed from the NOE’s induced by irradiating, in CDCl3
solution, 4-H (d = 7.84 ppm): The absorption of 1¢-H
(d = 6.50 ppm) remained unaltered while the absorption of
2¢-H (d = 7.02 ppm) increased. In Z-8 an analogous
(22) Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43,
2923.
(23) Labadie, J. W.; Tueting, D.; Stille, J. K. J. Org. Chem. 1983,
48, 4634.
Synlett 2004, No. 2, 321–325 © Thieme Stuttgart · New York