Scheme 1. Ni-Catalyzed Coupling of Alkenyl Borates 6 with the AB Ring Model 5
metric route to such an ABCD ring system was recently
double bond in the D ring. The resulting enol ether 9 was
oxidized with Pb(OAc)4 at -5 °C in the presence of
14
established11 and this unit is expected to be a common
precursor for the divergent synthesis of the left wings of both
1 and 2. The required steps for synthesizing 3 include the
assembly of the A ring substituent as well as the tetra-
hydrooxepin E ring. On the other hand, alternative construc-
tion of the tetrahydrooxocin E ring system will produce the
corresponding left wing of CTX3C 1 as well.
pyridine, as an acid scavenger yielding a single stereoisomer
of unstable 10. Addition of pyridine to this oxidation reaction
was essential to effectively attain 10. The Ni-catalyzed
coupling of 10 with the alkenylborate 6b9d,12 proceeded with
high stereoselectivity yielding the R-adduct 11 and the
γ-adduct 12 with a 42% yield (three steps from 4) in a 1:1
ratio. The stereochemistry of 11 was established using NOE
experiments. Thus, efficient installation of the dihydroxy-
butenyl substituent into the ABCD ring fragment was
achieved with complete stereocontrol.
In an effort to adopt the recently developed Ni-catalyzed
coupling technology,9d,12 the effect of dihydroxybutenyl
borate protective groups on the regioselectivity was inves-
tigated. Since the NAP group proved to be optimal for the
total synthesis of 1,5b bis NAP ether 6a was examined as a
coupling agent with the model AB ring fragment 5 (Scheme
1). The R/γ selectivity, however, resulted in a less satisfactory
ratio (7a:8a ) 1:3), while the TBS ether 6b afforded a more
acceptable ratio (7b:8b ) 1:1.1).
Scheme 2. Assembly of the Dihydroxybutenyl Substituent in
the ABCD Ring Systema
The allylic acetate 10 of the ABCD ring was stereoselec-
tively synthesized from 411 via enol ether 9 (Scheme 2).
Isomerization of the C6,7-double bond of 4 was achieved
using Wilkinson catalyst and DBU13 without affecting the
(6) Recent synthetic studies from other groups, see: (a) Takai, S.;
Sawada, N.; Isobe, M. J. Org. Chem. 2003, 68, 3225-3231. (b) Takakura,
H.; Sasaki, M.; Honda, S.; Tachibana, K. Org. Lett. 2002, 4, 2771-2774.
(c) Fujiwara, K.; Koyama, Y.; Kawai, K.; Tanaka, H.; Murai, A. Synlett
2002, 1835-1838. (d) Bond, S.; Perlmutter, P. Tetrahedron 2002, 58, 1779-
1787. (e) Candenas, M. L.; Pinto, F. M.; Cintado, C. G.; Morales, E. Q.;
Brouard, I.; D´ıaz, M. T.; Rico, M.; Rodr´ıguez, E.; Rodr´ıguez, R. M.; Pe´rez,
R.; Pe´rez, R. L.; Mart´ın, J. D. Tetrahedron 2002, 58, 1921-1942.
(7) (a) Isolation: Murata, M.; Legrand, A.-M.; Ishibashi, Y.; Yasumoto,
T. J. Am. Chem. Soc. 1989, 111, 8929-8931. Murata, M.; Legrand, A. M.;
Ishibashi, Y.; Fukui, M.; Yasumoto, T. J. Am. Chem. Soc. 1990, 112, 4380-
4386. (b) Absolute configuration: Satake, M.; Morohashi, A.; Oguri, H.;
Oishi, T.; Hirama, M.; Harada, N.; Yasumoto, T. J. Am. Chem. Soc. 1997,
119, 11325-11326.
a Reagents and conditions: (a) (Ph3P)3RhCl (0.1 equiv), DBU
(1 equiv), MeOH-ClCH2CH2Cl (1:1), 65 °C, 15 min. (e) Pb(OAc)4
(3 equiv), pyridine (3 equiv), CH2Cl2, -18 to -5 °C, 42 h. (f) 6b
(3.3 equiv), NiCl2(PPh3)2 (0.3 equiv), tBuCN (2.0 equiv), NaI (1.0
equiv), THF, 0 °C to room temperature, 1.7 h, 11 (20%), 12 (22%)
(three steps from 4).
(8) Tatami, A.; Inoue, M.; Uehara, H.; Hirama, M. Tetrahedron Lett.
2003, 44, 5229-5233.
(9) Previous our approaches, see: (a) Sato, O.; Hirama, M. Synlett 1992,
705-707. (b) Oguri, H.; Tanaka, S.; Hishiyama, S.; Oishi, T.; Hirama, M.;
Tsumuraya, T.; Tomioka, Y.; Mizugaki, M. Synthesis 1999, 1431-1436.
(c) Oguri, H.; Sasaki, S.; Oishi, T.; Hirama, M. Tetrahedron Lett. 1999,
40, 5405-5408. (d) Oguri, H.; Tanaka, S.; Oishi, T.; Hirama, M.
Tetrahedron Lett. 2000, 41, 975-978.
(10) Approaches of other groups, see: (a) Oka, T.; Fujiwara, K.; Murai,
A. Tetrahedron 1998, 54, 21-44. (b) Hosokawa, S.; Isobe, M. J. Org. Chem.
1999, 64, 37-48. (c) Saeeng, R.; Isobe, M. Heterocycles 2001, 54, 789-
798.
The tetrahydrooxepin E ring was subsequently assembled
using a novel synthon, R-chlorosulfide 1515 (Scheme 3). After
sequential manipulation of the protective groups of 11 and
(13) (a) Corey, E. J.; Suggs, J. W. J. Org. Chem. 1973, 38, 3224. (b)
Leeuwenburgh, M. A.; Overkleeft, H. S.; van der Marel, G. A.; van Boom,
J. H. Synlett 1997, 1263-1264.
(14) (a) Dunkerton, L. V.; Euske, J. M.; Serino, A. J. Carbohydr. Res.
1987, 171, 89-107. (b) Hurd, C. D.; Edward, O. E. J. Org. Chem. 1954,
19, 1319-1324.
(15) R-Chlorosulfide 15 was synthesized from 2,3-O-isopropylidene-
glyceraldehyde in six steps: (i) Ph3PCH3Br, KOtBu, THF, 0 °C; (ii) pTsOH‚
H2O, THF-MeOH (8:1); (iii) TBSCl, imidazole, DMF; (iv) PPTS, EtOH,
20% in four steps; (v) Bu3P, (PhS)2, pyridine, 89%; (vi) NCS, CCl4, 100%.
(11) Oishi, T.; Tanaka, S.; Ogasawara, Y.; Maeda, K.; Oguri, H.; Hirama,
M. Synlett 2001, 952-954.
(12) (a) Kobayashi, Y.; Mizojiri, R.; Ikeda, E. J. Org. Chem. 1996, 61,
5391-5399. (b) Kobayashi, Y.; Takahisa, E.; Usmani, S. B. Tetrahedron
Lett. 1998, 39, 597-600. (c) Usmani, S. B.; Takahisa, E.; Kobayashi, Y.
Tetrahedron Lett. 1998, 39, 601-604. (d) Kobayashi, Y.; Murugesh, M.
G.; Nakano, M. Takahisa, E.; Usmani, S. B.; Ainai, T. J. Org. Chem. 2002,
67, 7110-7123.
752
Org. Lett., Vol. 6, No. 5, 2004