C
W. Xie et al.
Letter
Synlett
Control experiments showed that 84% yield of product
4a was obtained when intermediate 3a was treated under
the standard conditions (Scheme 2). Moreover, 82% yield of
product 4a was isolated under N2 protection, and no de-
sired product was observed without electricity. These re-
sults further exclude that oxygen is the oxidation source in
this reaction. Additionally, when the above reaction was
conducted in the presence of 3Å molecular sieves, the de-
sired product 4a was suppressed and only 25% yield was
obtained.
tion could be carried out at room temperature without the
use of any oxidants. This process offers an alternative to
conventional methods that require metal catalysts or chem-
ical oxidants and represents an environmentally benign
tool for oxidative C=O bond formation.
Funding Information
This work was supported by the Education Department of Jilin Prov-
ince (No. JJKH20180244KJ), the Jilin Scientific and Technological De-
velopment Program (No. 20160520039JH), and Jilin University (No.
2015330). Additional support was provided by Changchun Discovery
C
Pt
Sciences, Ltd.Ji
l
i
n
U
n
i
v
ersity(2
0
1
5
3
3
0)E
d
u
c
ati
o
n
D
e
p
armt
e
ntof
J
i
l
i
n
Pro
v
i
n
c
e
(J
K
H
2
0
1
8
0
2
4
4
K
J
)Ji
l
i
n
S
c
i
e
ntifi
c
a
n
d
T
e
c
h
n
o
l
o
g
i
c
a
lD
e
v
e
l
o
p
m
e
ntProgra
m
(2
0
1
6
0
5
2
0
0
3
9
J
H)
N
O
N
Ph
Ph
Et4NOTs (0.1 M)
CH2Cl2 (wet), rt
constant current = 5 mA, 4 h
EtO
EtO
P
O
4a
Acknowledgment
3a (0.25 mmol)
no deviation: 84% yield
N2 protection: 82% yield
no electricity: 0% yield
3Å MS (250 mg) was added: 25% yield
We thank Mr. Xuyang Luo for NMR measurements.
Scheme 2 Control experiments
Supporting Information
Supporting information for this article is available online at
On the basis of the observations above and literature re-
ports,9 a possible mechanism for the electrochemical oxida-
tive reaction was proposed (Scheme 3). As a start, com-
pound 1a loses two electrons and a proton on the surface of
the anode to generate the iminium-ion intermediate I. In-
termediate I is captured by diethyl phosphite to afford com-
pound 3a. Meanwhile, concomitant cathodic reduction of
H2O releases H2 and HO–. Compound 3a undergoes subse-
quent nucleophilic substitution with HO– to generate inter-
mediate II. Intermediate II is further oxidized to give the
desired product 4a. The mechanism is consistent with the
result of entry 1 (Table 1); prolonging the reaction time will
increase the concentration of HO– and favor the formation
of the desired product 4a.
S
u
p
p
orit
n
gInformati
o
n
S
u
p
p
orit
n
gInformati
o
n
References and Notes
(1) Chrzanowska, M.; Rozwadowska, M. D. Chem. Rev. 2004, 104,
3341.
(2) (a) Krane, B. D.; Shamma, M. J. Nat. Prod. 1982, 45, 377.
(b) Pettit, G. R.; Meng, Y.; Herald, D. L.; Graham, K. A. N.; Pettit,
R. K.; Doubek, D. L. J. Nat. Prod. 2003, 66, 1065. (c) Fatima, N.;
Reddy, B. V. S. Sabitha G.; Yadav, J. S.; Sudhakar, K.; Putta, C. S.
Bioorg. Med. Chem. Lett. 2018, 28, 196.
(3) Chen, Z.-Y.; Wu, L.-Y.; Fang, H.-S.; Zhang, T.; Mao, Z.-F.; Zou, Y.;
Zhang, X.-J.; Yang, M. Adv. Synth. Catal. 2017, 359, 3894.
(4) (a) Han, W.; Mayer, P.; Ofial, A. R. Adv. Synth. Catal. 2010, 352,
1667. (b) Kohls, P.; Jadhav, D.; Pandey, G.; Reiser, O. Org. Lett.
2012, 14, 672. (c) Liu, Y.; Wang, C.; Xue, D.; Xiao, M.; Liu, J.; Li,
C.; Xiao, J. Chem. Eur. J. 2017, 23, 3062. (d) Patil, M. R.; Dedhia, N.
P.; Kapdi, A. R.; Kumar, A. V. J. Org. Chem. 2018, 83, 4477.
(5) (a) Zhang, Y.; Riemer, D.; Schilling, W.; Kollmann, J.; Das, S. ACS
Catal. 2018, 8, 6659. (b) Clark, J. L.; Hill, J. E.; Rettig, I. D.; Beres, J.
J.; Ziniuk, R.; Ohulchanskyy, T. Y.; McCormick, T. M.; Detty, M. R.
Organometallics 2019, 38, 2431. (c) Guryev, A. A.; Hahn, F.;
Marschall, M.; Tsogoeva, S. B. Chem. Eur. J. 2019, 25, 4062.
(6) (a) Song, A.-R.; Yu, J.; Zhang, C. Synthesis 2012, 44, 2903.
(b) Griffiths, R. J.; Burley, G. A.; Talbot, E. P. A. Org. Lett. 2017, 19,
870.
anode
cathode
e–
e–
N
N
Ph
Ph
– 2H+
– 2e–
4a
II
O
–
+ HO
HO–
1/2 H2
–
– PO(OEt)2
OH
N
O
+ HPO(OEt)2
– H+
Ph
H2O
EtO
EtO
3a
P
N
– H+
– 2e–
Ph
Ph
(7) Aganda, K. C. C.; Hong, B.; Lee, A. Adv. Synth. Catal. 2019, 361,
1124.
I
(8) (a) Yan, M.; Kawamata, Y.; Baran, P. S. Chem. Rev. 2017, 117,
13230. (b) Tang, S.; Zeng, L.; Lei, A. J. Am. Chem. Soc. 2018, 140,
13128. (c) Tang, S.; Liu, Y.; Lei, A. Chem 2018, 4, 27.
(9) Li, C.; Zeng, C.-C.; Hu, L.-M.; Yang, F.-L.; Yoo, S. J.; Little, R. D.
Electrochim. Acta 2013, 114, 560.
N
H
1a
Scheme 3 Proposed mechanism
(10) Xie, W.; Liu, N.; Gong, B.; Ning, S.; Che, X.; Cui, L.; Xiang, J. Eur. J.
Org. Chem. 2019, 2498.
(11) 2-Phenyl-3,4-dihydroisoquinolin-1(2H)-one (4a); Typical
Procedure
In summary, we have successfully developed a diethyl
phosphite mediated electrochemical oxidation strategy for
the synthesis of 3,4-dihydroisoquinolin-1(2H)-ones from
tetrahydroisoquinolines using an undivided cell. This reac-
A 10 mL distillation flask equipped with a magnetic stirring bar
© 2019. Thieme. All rights reserved. Synlett 2019, 30, A–D