Organic Letters
Letter
MsCl in the presence of Et3N and DMAP in CH2Cl2, only one of
the hydroxy group was eliminated and the (+)-hydroxyanceps-
nolide (5a) [[α]D20 = +20.4 (c 0.6, CHCl3), lit.4f [α]2D0 = +20.0 (c
0.59, CHCl3)] was obtained in 55% yield (along with 30% of
unreacted lactone 16) constituting the enantiospecific first total
synthesis and establishing its absolute configuration. Acylation of
(+)-hydroxyancepsenolide (5a) with Ac2O in pyridine in the
presence of catalytic amount of DMAP furnished (+)-hydrox-
yancepsenolide acetate (5b) [[α]2D1 = +18.5 (c 0.6, CHCl3), lit.4d
[α]2D5 = +3.7 (c 2.2, CHCl3)] (Scheme 7). Their structures were
confirmed by the comparison of spectral data with those reported
in the literature.
REFERENCES
■
(1) (a) Rao, Y. S. Chem. Rev. 1976, 76, 625. (b) Kitson, R. R. A.;
Millemaggi, A.; Taylor, R. J. K. Angew. Chem., Int. Ed. 2009, 48, 9426.
(2) (a) Nishida, T.; Nihira, T.; Yamada, Y. Tetrahedron 1991, 47, 6623.
(b) Riclea, R.; Aigle, B.; Leblond, P.; Schoenian, I.; Spiteller, D.;
Dickscha, J. S. ChemBioChem 2012, 13, 1635 and references cited
therein.
(3) (a) Lopes, N. P.; Franca, S. D. C.; Pereira, A. M. S.; Maia, J. G. S.;
Kato, M. J.; Cavalheiro, A. J.; Gottlieb, O. R.; Yoshida, M. Phytochemistry
1994, 35, 1469. (b) Lopes, N. P.; Blumenthal, E. E. D. A.; Cavalheiro, A.
J.; Kato, M. J.; Yoshida, M. Phytochemistry 1996, 43, 1089. (c) Magri, F.
M. M.; Kato, M. J.; Yoshida, M. Phytochemistry 1996, 43, 669. (d) Lopes,
N. P.; Silva, D. H. S.; Kato, M. J.; Yoshida, M. Phytochemistry 1998, 49,
1405. (e) Lopes, N. P.; Kato, M. J.; Yoshida, M. Phytochemistry 1999, 51,
29.
(4) (a) Schmitz, F. J.; Kraus, K. W.; Ciereszko, L. S.; Sifford, D. H.;
Weinheimer, A. J. Tetrahedron Lett. 1966, 7, 97. (b) Schitz, F. J.;
Lorance, E. D.; Ciereszko, L. S. J. Org. Chem. 1969, 34, 1989. (c) Schitz,
F. J.; Lorance, E. D. J. Org. Chem. 1971, 36, 719. (d) Rodriguez, A. D.;
Ramirez, C. J. Nat. Prod. 1994, 57, 339. (e) Guo, Y.-W.; Gavagnin, M.;
Mollo, E.; Trivellone, E.; Cimino, G. J. Nat. Prod. 1999, 62, 1194.
(f) Lorenzo, M.; Brito, I.; Cueto, M.; D’Croz, L.; Darias, J. Org. Lett.
2006, 8, 5001.
Scheme 7. Total Synthesis of (+)-Ancepsenolide (4),
(+)-Hydroxyancepsnolide (5a), and
(+)-Hydroxyancepsenolide Acetate (5b)
(5) Recent examples of the total synthesis of (+)-blastmycinone and
(+)-antimycinone: (a) Ferrarini, R. S.; Santos, A. A. D.; Comasseto, J. V.
Tetrahedron 2012, 68, 8431. (b) Lee, S. I.; Jang, J. H.; Hwang, G.-S.; Ryu,
D. H. J. Org. Chem. 2013, 78, 770 Supporting Information contains a full
list.
(6) Total synthesis of (+)-juruenolide C: Clive, D. L. J.; Ardelean, E. S.
J. Org. Chem. 2001, 66, 4841.
(7) Total synthesis of (+)-ancepsenolide: (a) Podraza, K. F.; Sneden,
A. T. J. Nat. Prod. 1985, 48, 792. (b) Larson, G. L.; Perez, R. M. B. J. Org.
Chem. 1985, 50, 5257. (c) Trost, B. M.; Muller, T. J. J. J. Am. Chem. Soc.
1994, 116, 4985. (d) Trost, B. M.; Muller, T. J. J.; Martinez, J. J. Am.
Chem. Soc. 1995, 117, 1888. (e) Yao, Z.-J.; Yu, Q.; Wu, Y−L. Synth.
In conclusion, we have developed a general enantiospecific
approach for the synthesis of butanolide and butenolide based
natural products using DAC 6 as a common precursor. A
common strategy was used to achieve the first total syntheses of
butanolides 2a, 2d, (+)-juruenolide D (2c), butenolide 3,
(+)-hydroxyancepsenolide (5a), and (+)-hydroxyancepsnolide
acetate (5b). The protocol also gave an efficient access to the
total synthesis of (+)-juruenolide C (2b), (+)-ancepsenolide (4),
(+)-blastmycinone (1a), and (+)-antimycinone (1b).
Commun. 1996, 3613. (f) Furstner, A.; Dierkes, T. Org. Lett. 2000, 2,
̈
2463. (g) Takai, K.; Iriye, R. Biosci. Biotechnol. Biochem. 2001, 65, 1903.
(h) Yang, Y.-Q.; Yi-Kang, W. Chin. J. Chem. 2005, 23, 1519. (i) Ghobril,
C.; Kister, J.; Baati, R. Eur. J. Org. Chem. 2011, 3416. (j) Hikosaka, G.;
Hattori, Y.; Makabe, H. Tetrahedron: Asymmetry 2014, 25, 1367.
(8) (a) Gharpure, S. J.; Shukla, M. K.; Vijayasree, U. Org. Lett. 2009, 11,
5466. (b) Gharpure, S. J.; Nanda, L. N.; Shukla, M. K. Eur. J. Org. Chem.
2011, 6632. (c) Gharpure, S. J.; Vijayasree, U.; Reddy, S. R. B. Org.
Biomol. Chem. 2012, 10, 1735.
(9) (a) Jones, S. B.; Simmons, B.; Mastracchio, A.; MacMillan, D. W. C.
Nature 2011, 475, 183. (b) Shimokawa, J. Tetrahedron Lett. 2014, 55,
6156.
ASSOCIATED CONTENT
* Supporting Information
■
S
(10) Reviews: (a) Reissig, H. U.; Zimmer, R. Chem. Rev. 2003, 103,
1151. (b) Yu, M.; Pagenkopf, B. L. Tetrahedron 2005, 61, 321.
(c) Carson, C. A.; Kerr, M. A. Chem. Soc. Rev. 2009, 38, 3051.
(d) Lebold, T. P.; Kerr, M. A. Pure Appl. Chem. 2010, 82, 1797.
(e) Mel’nikov, M. Y.; Budynina, E. M.; Ivanova, O. A.; Trushkov, I. V.
Mendeleev Commun. 2011, 21, 293. (f) Wang, Z. W. Synlett 2012, 2311.
(g) Tang, P.; Qin, Y. Synthesis 2012, 44, 2969. (h) Cavitt, M. A.; Phun, L.
H.; France, S. Chem. Soc. Rev. 2014, 43, 804. (i) Schneider, T. F.;
Kaschel, J.; Werz, D. B. Angew. Chem., Int. Ed. 2014, 53, 5504.
(11) Reviews: (a) Connon, S. J.; Blechert, S. Angew. Chem., Int. Ed.
2003, 42, 1900. (b) Wojtkielewicz, A. Curr. Org. Synth. 2013, 10, 43.
Synthetic procedures and characterization data of products. This
material is available free of charge via the Internet at http://pubs.
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We thank the Department of Science and Technology (DST)
and the Council of Scientific and Industrial Research (CSIR),
New Delhi, for financial support. We are grateful to CSIR, New
Delhi, for the award of research fellowships to LNN.
DEDICATION
■
Dedicated to Professor U. V. Varadaraju, IIT Madras, on the
occasion of his 60th birthday.
D
dx.doi.org/10.1021/ol503246k | Org. Lett. XXXX, XXX, XXX−XXX