S. Ohira et al. / Tetrahedron Letters 45 (2004) 1639–1641
1641
1H, J ¼ 6:6 Hz), 4.31 (t, 1H, J ¼ 6:5 Hz), 5.29 (t, 1H,
J ¼ 6:6 Hz), 5.61 (s, 1H), 6.29 (d, 1H, J ¼ 6:4 Hz), 7.26 (d,
1H, J ¼ 6:4 Hz); 13C NMR (DMSO-d6) d 19.43, 69.13,
83.62, 84.11, 133.72, 160.34, 204.35.
References and notes
1. (a) Matsumoto, T.; Ishiyama, A.; Yamaguchi, Y.;
Masuma, R.; Ui, H.; Shiomi, K.; Yamada, H.; Omura, S.
J. Antibiot. 1999, 52, 754–757; (b) Matsumoto, T.;
Ishiyama, A.; Yamaguchi, Y.; Masuma, R.; Ui, H.; Shiomi,
K.; Yamada, H.; Omura, S. J. Antibiot. 2003, 56, C2.
2. While this manuscript was in preparation, another group
reported determination of the absolute structure of pent-
enocin B by synthesis of all racemic diastereomers and the
natural type enantiomer. The structure they suggested was
identical to ours, Sugahara, T.; Fukuda, H.; Iwabuchi, Y.
Tennen Yuki Kagobutsu Toronkai Koen Yoshishu 2003, 45,
573–578.
2: ½aꢀ )89° (c 0.42, MeOH); 1H NMR (DMSO-d6) d 1.15
D
(d, 3H, J ¼ 6:4 Hz), 3.66 (quint, 1H, J ¼ 6:4 Hz), 3.91 (d,
1H, J ¼ 7:2 Hz), 4.84 (s, 1H), 4.86 (d, 1H, J ¼ 6:4 Hz),
5.47 (d, 1H, J ¼ 7:2 Hz), 6.22 (d, 1H, J ¼ 6:2 Hz), 7.60 (d,
1H, J ¼ 6:2 Hz); 13C NMR (DMSO-d6) d 18.90, 69.99,
73.94, 80.33, 134.19, 163.48, 208.84.
1
3: ½aꢀ )117° (c 0.12, H2O); H NMR (DMSO-d6) d 0.80
D
(d, 3H, J ¼ 6:4 Hz), 3.79 (quint, 1H, J ¼ 6:4 Hz), 4.05 (d,
1H, J ¼ 5:5 Hz), 4.63 (d, 1H, J ¼ 6:4 Hz), 5.38 (s, 1H),
5.90 (d, 1H, J ¼ 5:5 Hz), 6.30 (d, 1H, J ¼ 6:3 Hz), 7.31 (d,
1H, J ¼ 6:3 Hz); 13C NMR (DMSO-d6) d 19.60, 70.86,
82.60, 83.71, 132.80, 162.72, 205.40.
3. (a) Ohira, S.; Ida, T.; Moritani, M.; Hasegawa, T.
J. Chem. Soc., Perkin Trans. 1 1998, 293–298; (b) Ohira, S.;
Noda, I.; Mizobata, T.; Yamato, M. Tetrahedron Lett.
1995, 36, 3375–3376.
4: ½aꢀ )58° (c 0.40, H2O); 1H NMR (DMSO-d6) d 1.13 (d,
D
3H, J ¼ 6:4 Hz), 3.70 (qd, 1H, J ¼ 5:4 Hz, 6.4 Hz), 3.92 (d,
1H, J ¼ 7:5 Hz), 4.80 (d, 1H, J ¼ 5:4 Hz), 4.86 (s, 1H),
5.31 (d, 1H, J ¼ 7:5 Hz), 6.16 (d, 1H, J ¼ 6:2 Hz), 7.49 (d,
1H, J ¼ 6:2 Hz); 13C NMR (DMSO-d6) d 19.19, 70.52,
72.02, 80.08, 133.03, 166.68, 209.51.
4. Servi, S. J. Org. Chem. 1985, 50, 5865–5867.
5. (a) Sakai, A.; Aoyama, T.; Shioiri, T. Tetrahedron Lett.
2000, 41, 6859–6863; (b) Shioiri, T.; Aoyama, T. Synth.
Org. Chem., Jpn. 1996, 54, 918–928; (c) Ohira, S.; Okai, K.;
Moritani, T. J. Chem. Soc., Chem. Commun. 1992, 721–722.
6. 1H NMR (CDCl3) d 1.27 (d, 3H, J ¼ 6:3 Hz), 1.38 (s, 3H),
1.45 (s, 3H), 1.52 (s, 3H), 1.54 (m, 2H), 1.96 (m, 2H), 3.19
(s, 1H), 4.01 (q, 1H, J ¼ 6:3 Hz). Correlation was observed
between signals of d 1.27 and d 3.19.
7. Yasuda, A.; Tanaka, S.; Oshima, K.; Yamamoto, H.;
Nozaki, H. J. Am. Chem. Soc. 1974, 96, 6513–6514.
8. Mordini, A.; Ben Rayana, E.; Margot, C.; Schlosser, M.
Tetrahedron 1990, 46, 2401–2410.
11. Kim, K. S.; Szarek, W. A. Can. J. Chem. 1981, 59, 878–
888.
12. Ibuka, T.; Nishii, S.; Yamamoto, Y. Chem. Express 1988,
3, 53–56.
13. Suitable crystals of 22 for X-ray diffraction studies formed
with space group symmetry of P1 (#1) and cell constants
ꢀ
ꢀ
ꢀ
of a ¼ 7:465ð5Þ A, b ¼ 7:480ð4Þ A, c ¼ 9:781ð5Þ A for
Z ¼ 2 and calculated density of 1.246 g/cm3. Details will
be reported in due course.
14. Private communication from Professor Satoshi Omura.
Higher value (½aꢀ +101° (c 1.0, H2O)) was reported for
9. Ito, Y.; Hirao, T.; Saegusa, T. J. Org. Chem. 1978, 43,
1011–1013, We used a stoichiometric amount of palladium
acetate without benzoquinone to avoid the production of
dihydrobenzoquinone, which caused a problem in material
purification.
D
synthetic (+)-pentenocine B.2 To check the enatiomeric
1
purity of our samples, we examined H NMR spectra of
(S)-MTPA ester of the allylic alcohol from 22. No signal
for the diastereomer originating from the enantiomer of 22
was observed.
10. 1: ½aꢀ )53° (c 0.16, MeOH); 1H NMR (DMSO-d6) d 1.10
D
(d, 3H, J ¼ 6:5 Hz), 3.81 (quint, 1H, J ¼ 6:5 Hz), 3.90 (d,