Scheme 1
.
(a) Stoichiometric and (b) Phosphine
Scheme 2. Proposed Catalytic Dichlorination of Epoxides
Oxide-Catalyzed Dichlorination of Epoxides
alcohols.10 Herein, we report the first examples of phosphorus-
mediated dichlorination reactions that are catalytic with
respect to triphenylphosphine oxide (Scheme 1b).
Our plan for the design of catalytic reactions of this type
is depicted in Scheme 2 and involves a catalytic cycle in
which the transformation of triphenylphosphine oxide into
chlorophosphonium salt 2,10,11 with concomitant loss of CO
and CO2, closes the catalytic cycle. This redox-neutral
strategy9a avoids the difficult stoichiometric reduction of the
strong phosphorus-oxygen double bond that would be neces-
sary for catalytic turnover in an alternative phosphorus(III)/
phosphorus(V) cycle. The increased atom efficiency12 as-
sociated with replacement of stoichiometric triphenylphos-
phine oxide with CO and CO2 as waste is also an appealing
aspect of this strategy.
Our interest in this reaction stemmed both from the
synthetic utility of the products7d,8 and from the more
fundamental challenge that it presented in terms of catalytic
reaction development: the reaction is stoichiometric in
phosphonium salt and therefore stoichiometric triphenylphos-
phine oxide is generated as waste. This impacts severely on
the atom efficiency of this and many other widely used
phosphorus(V)-mediated processes such as the Wittig, Mit-
sunobu and Appel reactions. Given the phosphorus waste
generated by these processess and the drive toward the
development of cleaner chemical reactions, the phosphine
oxide problem is a pressing issue that needs to be addressed
by catalysis.9 Our work involves the development of new
catalytic versions of important phosphorus(V)-mediated
transformations. For example, we recently reported a new
triphenylphosphine oxide-catalyzed chlorination reaction of
We began by establishing that the chlorophosphonium salt
2, generated in situ from triphenylphosphine oxide and oxalyl
chloride, was effective for the dichlorination of epoxide 3a
(eq 1).
(4) For key papers on the stereoselective introduction of chlorine, see:
(a) Evans, D. A.; Sjogren, E. B.; Weber, A. E.; Conn, R. E. Tetrahedron
Lett. 1987, 28, 39. (b) Evans, D. A.; Ellman, J. A.; Dorow, R. L. Tetrahedron
Lett. 1987, 28, 1123. (c) Hu, S.; Jayaraman, S.; Oehlschlager, A. C. J. Org.
Chem. 1996, 61, 7513. (d) Hu, S.; Jayaraman, S.; Oehlschlager, A. C. J.
Org. Chem. 1996, 63, 8843. (e) Hintermann, L.; Tongi, A. HelV. Chim.
Acta 2000, 83, 2425. (f) Wack, H.; Taggi, A. E.; Hafez, A. M.; Drury,
W. J.; Lectka, T. J. Am. Chem. Soc. 2001, 131, 1531. (g) Hafez, A. M.;
Taggi, A. E.; Wack, H.; Esterbrook, J.; Lectka, T. Org. Lett. 2001, 3, 2049.
(h) Brochu, M. P.; Brown, S. P.; Macmillan, D. W. C. J. Am. Chem. Soc.
2004, 126, 4108. (i) Halland, N.; Braunton, A.; Bachmann, S.; Marigo,
We next reacted epoxide 3a with oxalyl chloride (eq 2).
The formation of two regioisomeric chlorooxalates 5a and
5b revealed a background reaction that could potentially
compete with the desired dichorination process.
M.; Jorgenson, K. A. J. Am. Chem. Soc. 2004, 126, 4790
.
(5) (a) Shibuya, G. M.; Kanady, J. S.; Vanderwal, C. D. J. Am. Chem.
Soc. 2008, 130, 12514. (b) Nilewski, C.; Geisser, R. W.; Ebert, M.-O.;
Carreira, E. M. J. Am. Chem. Soc. 2009, 131, 15866. (c) Kanady, J. S.;
Nguyen, J. D.; Ziller, J. W.; Vanderwal, C. D. J. Org. Chem. 2009, 74,
With this information in hand we began to investigate the
feasibility of catalytic dichlorination reactions (Table 1) on
substrate 3a. In the first instance (entry 1) chloroform
solutions of epoxide 3a and oxalyl chloride were added to a
solution of 20 mol % phosphonium salt 2 (formed from
oxalyl chloride and triphenylphosphine oxide). By using this
2175
.
(6) (a) Isaacs, N. S.; Kirkpatrick, D. Tetrahedron Lett. 1972, 13, 3869.
(b) Sonnet, P. E.; Oliver, J. E. J. Org. Chem. 1976, 41, 3279. (c) Echigo,
Y.; Watanabe, Y.; Mukaiyama, T. Chem. Lett. 1977, 1013. (d) Oliver, J. E.;
Sonnet, P. E. Org. Synth. 1978, 58, 64. (e) Croft, A. P.; Bartsch, R. A. J.
Org. Chem. 1983, 48, 3353. (f) Iranpoor, N.; Firouzabadi, H.; Azadi, R.;
Ebrahimzadeh, F. Can. J. Chem. 2006, 84, 69. (g) Yoshimitsu, T.;
Fukumoto, N.; Tanaka, T. J. Org. Chem. 2009, 74, 696
.
(7) For the total synthesis of (()-hexachlorosulfolipid, see: (a) Nilewski,
C.; Geisser, R. W.; Carreria, E. M. Nature 2009, 457, 573. For the total
synthesis of danicalipin A, see: (b) Bedke, D. K.; Shibuya, G. M.; Pereira,
A.; Gerwick, W. H.; Haines, T. H.; Vanderwal, C. D. J. Am. Chem. Soc.
2009, 131, 7570. For the total synthesis of malhamensilipin A, see: (c)
Bedke, D. K.; Shibuya, G. M.; Pereira, A. R.; Gerwick, W. H.; Vanderwal,
C. D. J. Am. Chem. Soc. 2010, 132, 2542. For the total synthesis of (+)-
hexachlorosulfolipid, see: . (d) Yoshimitsu, T.; Fukumoto, N.; Nakatani,
(9) Other research groups have been active in the development of
catalytic versions of phosphorus-mediated reactions; for the first phosphine
oxide-catalyzed aza-Wittig reaction, see: (a) McGonagle, A. E.; Marsden,
S. P.; McKever-Abbas, B. Org. Lett. 2008, 10, 2589. For the first phosphine
catalyzed Wittig reaction, see: (b) O’Brien, C. J.; Tellez, J. L.; Nixon, Z. S.;
Kang, L. J.; Carter, A. L.; Kunkel, S. R.; Przeworski, K. C.; Chass, G. C.
Angew. Chem., Int. Ed. 2009, 48, 6836. For Wittig reactions coupled with
phosphine oxide-promoted conjugate reduction and cyanosilylation, see:
(c) Cao, J.-J.; Zhou, F.; Zhou, J. Angew. Chem., Int. Ed. 2010, 49, 4976.
For a phosphine-catalyzed reduction of alkyl silyl peroxides, see: (d) Harris,
J. R.; Haynes, M. T., II; Thomas, A. M.; Woerpel, K. A. J. Org. Chem.
2010, 75, 5083.
R.; Kojima, N.; Tanaka, T. J. Org. Chem. 2010, 75, 5425
.
(8) For the functional group interconversion of chlorides, see: (a) Larock,
R. C. ComprehensiVe Organic Transformations; WILEY-VCH: Weinheim,
1999; p 667. (b) For elimination reactions of 1,2-dichlorides, see: (c) Larock,
R. C. ComprehensiVe Organic Transformations; WILEY-VCH: Weinheim,
(10) Denton, R. M.; Jie, A.; Adeniran, B. Chem. Commun. 2010, 46,
1999; p 259
.
3025.
Org. Lett., Vol. 12, No. 20, 2010
4679