W. T. Ashton et al. / Bioorg. Med. Chem. Lett. 14 (2004) 859–863
863
Table 2. Inhibition of DP-IV and other peptidases by diastereomeric
cyclohexylglycine derivatives
Acknowledgements
We are grateful to Ms. Jiafang He and Ms. Ping Chen
of the Department of Medicinal Chemistry for helpful
discussions.
References and notes
Compd Configuration
X
Y
IC50 (mM)
1. (a) Doyle, M. E.; Egan, J. M. Recent Prog. Horm. Res.
2001, 56, 377. (b) Holst, J. J. Diabetes/Metab. Res. Rev.
2002, 18, 430. (c) Drucker, D. J. Gastroenterology 2002,
122, 531. (d) Deacon, C. F.; Holst, J. J.; Carr, R. D.
Drugs Today 1999, 35, 159. (e) Meier, J. J.; Gallwitz, B.;
Nauck, M. A. Biodrugs 2003, 17, 93. (f) Creutzfeldt, W.
Exp. Clin. Endocrinol. Diabetes 2001, 109 (Suppl. 2), S288.
(g) Vahl, T.; D’Alessio, D. Curr. Opin. Clin. Nutr. Metab.
Care 2003, 6, 461.
2. Drucker, D. J. Curr. Pharm. Des. 2001, 7, 1399.
3. (a) Lambeir, A. M.; Durinx, C.; Scharpe, S.; De Meester,
I. Crit. Rev. Clin. Lab. Sci. 2003, 40, 209. (b) Demuth,
H.-U.; Heins, J., in Dipeptidyl Peptidase IV (CD26) in
Metabolism and the Immune Response. Fleischer, B. (Ed.),
R. G. Landes Co., Austin, TX, 1995, p1. (c) Augustyns,
K.; Bal, G.; Thonus, G.; Belyaev, A.; Zhang, X. M.;
Bollaert, W.; Lambeir, A. M.; Curinx, C.; Goossens, F.;
Haemers, A. Curr. Med. Chem. 1999, 6, 311. (d)
Boonacker, E.; Van Noorden, J. F. Eur. J. Cell Biol. 2003,
82, 53.
4. (a) Drucker, D. J. Exp. Opin. Investig. Drugs 2003, 12, 87.
(b) Augustyns, K.; Van der Veken, P.; Senten, K.;
Haemers, A. Exp. Opin. Investig. Drugs 2003, 13, 2003. (c)
Wiedeman, P. E.; Trevillyan, J. M. Curr. Opin. Investig.
Drugs 2003, 4, 412. (d) Villhauer, E. B.; Coppola, G. M.;
Hughes, T. E. Annu. Rep. Med. Chem. 2001, 36, 191. (e)
Holst, J. J.; Deacon, C. F. Diabetes 1998, 47, 1663.
5. (a) Meier, J. J.; Nauck, M. A.; Schmidt, W. E.; Gallwitz,
B. Regul. Pept. 2002, 107, 1. (b) Holst, J. J. Biodrugs 2002,
16, 175. (c) Brubaker, P. L.; Drucker, D. J. Recept.
Channel 2002, 8, 179. (d) Gault, V. A.; Flatt, P. R.;
O’Harte, F. P. M. Biochem. Biophys. Res. Commun. 2003,
308, 207.
6. Parmee, E. R.; He, J.; Mastracchio, A.; Edmondson, S.
D.; Colwell, L.; Eiermann, G.; Feeney, W. P.; Habulihaz,
B.; He, H.; Kilburn, R.; Leiting, B.; Lyons, K.; Marsilio,
F.; Patel, R. A.; Petrov, A.; Di Salvo, J.; Wu, J. K.;
Thornberry, N. A.; Weber, A. E. Bioorg. Med. Chem.
Lett. 2004, 14, 43.
a
1
3
DP-IV QPP PEP
(S,S,R Derivatives)
30a
30b
30c
30d
S
S
S
S
S
S
S
S
R
R
R
R
CH2 OH
CH2 OCONHPh-4-OMe 0.18
0.87 62
>100
2.5 >100
S
OCONHPh-4-OMe 0.083 0.22
76
27
CH2 OCONHPh-4-I
(S,S,S Derivatives)
CH2 OH
0.11
0.42
31a
31b
31c
31d
S
S
S
S
S
S
S
S
S
S
S
S
0.29 40
>100
0.78 >100
0.44 >100
0.11 >100
CH2 OCONHPh-4-OMe 0.48
OCONHPh-4-OMe 0.42
CH2 OCONHPh-4-I 0.33
S
vs 8b, 30c vs 8c, 30d vs 8d). In the cyclopentyl series, the
S,S,S diastereomers were clearly preferred over the
S,S,R. In the cyclohexyl series, however, the S,S,S aryl-
carbamate derivatives 31b–d were distinctly less active
than their S,S,R counterparts (31b vs 30b, 31c vs 30c,
31d vs 30d). Only with an un-derivatized alcohol was
the S,S,S diastereomer favored (31a vs 30a). In fact, the
3S-hydroxy compound 31a was at least as potent as any
of the S,S,S carbamates and was far more selective
(ꢁ140-fold over QPP).
In summary, a series of (3-substituted-cycloalkyl)glycine
pyrrolidides and thiazolidides has been prepared by a
diastereoselective route, allowing investigation of the
biochemical effects of defined stereochemistry at each of
the chiral centers. The general order of DP-IV inhibi-
tory activity for the cyclopentylglycine diastereo-
mers was aS,1R,3R>aS,1S,3S>aS,1S,3RꢂaS,1R,3S
>aR,1S,3R. In the cyclohexylglycine series, the activity
order was aS,1S,3R>aS,1S,3S for larger 3-sub-
stitutents but reversed for 3-hydroxy. Although the
thiazolidides were more potent than the corresponding
pyrrolidides, the thiazolidine derivatives were de-
emphasized because of potential metabolic liabilities.
The best combination of DP-IV potency (IC50=13 nM)
and selectivity over QPP (120-fold) was observed for
the S,S,R cyclopentylglycine pyrrolidide 21e bearing a
4-(methanesulfonyl)benzenesulfonamido substituent at
the 3-position. This compared favorably with the
previously reported reference compound 1 (DP-IV
IC50=22 nM, 50-fold over QPP).6
7. Eustache, J.; Grob, A.; Lam, C.; Sellier, O.; Schulz, G.
Bioorg. Med. Chem. Lett. 1998, 8, 2961.
8. Schollkopf, U.; Pettig, D.; Schulze, E.; Klinge, M.; Egert,
E.; Benecke, B.; Noltemeyer, M. Angew. Chem., Int. Ed.
Engl. 1988, 27, 1194.
9. (a) Lipshutz, B. H.; Kozlowski, J. A.; Parker, D. A.;
Nguyen, S. L.; McCarthy, K. E. J. Organometal. Chem.
1985, 285, 437. (b) Lipshutz, B. H.; Koerner, M.; Parker,
D. A. Tetrahedron Lett. 1987, 28, 945.
10. Leiting, B.; Pryor, K. D.; Wu, J. K.; Marsilio, F.; Patel,
R. A.; Craik, C. S.; Ellman, J. A.; Cummings, R. T.;
Thornberry, N. A. Biochem. J. 2003, 371, 525.
11. (a) Rosenblum, J. S.; Kozarich, J. W. Curr. Opin. Chem.
Biol. 2003, 7, 1. (b) Cunningham, D. F.; O’Connor, B.
Biochim. Biophys. Acta 1997, 1343, 160. (c) Chen, W.-T.;
Kelly, T.; Chersi, G. Curr. Topics Dev. Biol. 2003, 54, 207.
(d) Vanhoof, G.; Goossens, F.; De Meester, I.; Hendriks,
D.; Scharpe, S. FASEB J. 1995, 9, 736.
Appended groups at the 3-position of cycloalkylglycines
can thus produce either favorable or unfavorable con-
sequences for enzyme inhibition, depending on the
configuration at the chiral centers and the nature of the
substituent. Furthermore, these effects are sometimes
quite divergent between DP-IV and other proline-
specific peptidases. It can be concluded that enzyme
surface interactions accessible to these ring substituents
represent a potentially important determinant of
potency and selectivity.
12. QPP is also known as dipeptidyl peptidase VII and is very
similar, if not identical, to dipeptidyl peptidase II. See ref 10.