3964 J ournal of Medicinal Chemistry, 2003, Vol. 46, No. 19
Letters
(17) We acknowledge a reviewer for suggesting that the discrepancy
may be explained by the involvement of ERâ.
to HRT. Although the biological mechanism by which 1
exerts its unique pharmacological effects is an open
question, our results would facilitate the development
of a new generation SERMs.
(18) (a) Kuiper, G. G. J . M.; Carlsson, B.; Grandien, K.; Enmark, E.;
Ha¨ggblad, J .; Nilsson, S.; Gustafsson, J .-A° . Comparison of the
Ligand Binding Specificity and Transcript Tissue Distribution
of Estrogen Receptors R and â. Endocrinology 1997, 138, 863-
869. (b) Watanabe, T.; Inoue, S.; Ogawa, S.; Ishii, Y.; Hiroi, H.;
Ikeda, K.; Orimo, A.; Muramatsu, M. Agonistic Effect of Tamox-
ifen Is Dependent on Cell Type, ERE-Promoter Context, and
Estrogen Receptor Subtype: Functional Difference between
Estrogen Receptors R and â. Biochem. Biophys. Res. Commun.
1997, 236, 140-145.
Su p p or tin g In for m a tion Ava ila ble: Experimental pro-
cedures for the synthesis of 1, and physical and spectral data
for key compounds. This material is available free of charge
(19) For detailed descriptions of the current understanding of tissue-
specific steroid hormone activities, see the following. (a) Katzenel-
lenbogen, J . A.; O’Malley, B. W.; Katzenellenbogen, B. S.
Tripartite Steroid Hormone Receptor Pharmacology: Interaction
Refer en ces
(1) For a recent review, see the following. Stearns, V.; Ullmer, L.;
Lo´pez, J . F.; Smith, Y.; Isaacs, C.; Hayes, D. F. Hot Flushes.
Lancet 2002, 360, 1851-1861.
with Multiple Effector Sites as
a Basis for the Cell- and
(2) For recent reviews, see the following. (a) Freedman, R. R.
Physiology of Hot Flashes. Am. J . Hum. Biol. 2001, 13, 454-
464. (b) Shanafelt, T. D.; Barton, D. L.; Adjei, A. A.; Loprinzi,
C. L. Pathphysiology and Treatment of Hot Flashes. Mayo Clin.
Proc. 2002, 77, 1207-1218.
Promoter-Specific Action of These Hormones. Mol. Endocrinol.
1996, 10, 119-131. (b) Kousteni, S.; Bellido, T.; Plotkin, L. I.;
O’Brien, C. A.; Bodenner, D. L.; Han, L.; Han, K.; DiGregorio,
G. B.; Katzenellenbogen, J . A.; Katzenellenbogen, B. S.; Rober-
son, P. K.; Weinstein, R. S.; J ilka, R. L.; Manolagas, S. C.
Nongenotropic, Sex-Nonspecific Signaling through the Estrogen
or Androgen Receptors: Dissociation from Transcriptional Activ-
ity. Cell 2001, 104, 719-730.
(3) Seibel, M. M. Treating Hot Flushes without Hormone Replace-
ment Therapy. J . Fam. Pract. 2003, 52, 291-296.
(4) (a) Hulley, S.; Grady, D.; Bush, T.; et al. Randomized Trial of
Estrogen plus Progestin for Secondary Prevention of Coronary
Heart Disease in Postmenopausal Women. J . Am. Med. Assoc.
1998, 280, 605-613. (b) Collaborative Group on Hormonal
Factors in Breast Cancer. Breast Cancer and Hormone Replace-
ment Therapy. Lancet 1997, 350, 1047-1059.
(20) Similar discrepancies have been reported. See the following. (a)
Grese, T. A.; Cho, S.; Finley, D. R.; Godfrey, A. G.; J ones, C. D.;
Lugar, C. W., III; Martin, M. J .; Matsumoto, K.; Pennington, L.
D.; Winter, M. A.; Adrian, M. D.; Cole, H. W.; Magee, D. E.;
Phillips, D. L.; Rowley, E. R.; Short, L. L.; Glasebrook, A. L.;
Bryant, H. U. Structure-Activity Relationships of Selective
Estrogen Receptor Modulators: Modifications to the 2-Arylben-
zothiophene Core of Raloxifene. J . Med. Chem. 1997, 40, 146-
167. (b) Labaree, D. C.; Reynolds, T. Y.; Hochberg, R. B.
Estradiol-16R-Carboxylic Acid Esters as Locally Active Estro-
gens. J . Med. Chem. 2001, 44, 1802-1814.
(5) For recent reviews, see the following. (a) J ordan, V. C. Anties-
trogens and Selective Estrogen Receptor Modulators as Multi-
functional Medicines. 1. Receptor Interactions. J . Med. Chem.
2003, 46, 883-908. (b) J ordan, V. C. Antiestrogens and Selective
Estrogen Receptor Modulators as Multifunctional Medicines. 2.
Clinical Considerations and New Agents. J . Med. Chem. 2003,
46, 1081-1111. (c) Riggs, B. L.; Hartmann, L. C. Selective
Estrogen-Receptor ModulatorssMechanisms of Action and Ap-
plication to Clinical Practice. N. Engl. J . Med. 2003, 348, 618-
629.
(6) Plouffe, L., J r.; Facoq, C. M. Selective Estrogen Receptor
Modulators (SERMs) in Clinical Practice. J . Soc. Gynecol. Invest.
2000, 7, S38-S46.
(7) (a) Davies, G. C.; Huster, M. W. J .; Lu, Y.; Plouffe, L., J r.;
Lakshmanan, M. Adverse Events Reported by Postmenopausal
Women in Controlled Trials with Raloxifene. Obstet. Gynecol.
1999, 93, 558-565. (b) Loprinzi, C. L.; Zahasky, K. M.; Slaoan,
J . A.; Novotny, P. J .; Quella, S. K. Tamoxifen-Induced Hot
Flashes. Clin. Breast Cancer 2000, 1, 52-56.
(8) Estrogen receptor ligands possessing spiroindenes have been
reported. See the following. Blizzard, T. A.; Morgan, J . D., II;
Mosley, R. T.; Birzin, E. T.; Frisch, K.; Rohrer, S. P.; Hammond,
M. L. 2-Phenylspiroindenes: A Novel Class of Selective Estrogen
Receptor Modulators (SERMs). Bioorg. Med. Chem. Lett. 2003,
13, 479-483.
(9) The absolute configuration of 1 has not been determined.
(10) For recent reviews, see the following. (a) Ye, T.; McKervey, M.
A. Organic Synthesis with R-Diazocarbonyl Compounds. Chem.
Rev. 1994, 94, 1091-1160. (b) Doyle, M. P.; McKervey, M. A.
Recent Advances in Stereoselective Synthesis Involving Diazo-
carbonyl Intermediates. J . Chem. Soc., Chem. Commun. 1997,
983-989.
(11) Marxer, A.; Rodriguez, H. R.; McKenna, J . M.; Tsai, H. M. Spiro
Piperidines. I. Synthesis of Spiro[isobenzofuran-1(3H),4′-pip-
eridines] and Spiro[isobenzofuran-1(3H),3′-piperidines]. J . Org.
Chem. 1975, 40, 1427-1433.
(12) The reaction exclusively gave the spirolactone. See Supporting
Information.
(13) Ireland, R. E.; Walba, D. M. Demethylation of Methyl Aryl
Ethers: 4-Ethoxy-3-Hydroxybenzaldehyde. Org. Synth. 1988, VI,
567-570 (Collective).
(14) (a) Rufbin, V. N.; Ruenitz, P. C.; Boyd, J . L.; Boudinot, F. D.;
Wiese, T. E. Characterization of Selective Estrogen Receptor
Modulator (SERM) Activity in Two Triarylethylene Oxybutyric
Acids. Biochem. Pharmacol. 2002, 63, 1517-1525. (b) Wang, T.
T.; Sathyamoorthy, N.; Phang, J . M. Molecular Effects of
Genistein on Estrogen Receptor Mediated Pathways. Carcino-
genesis 1996, 17, 271-275.
(15) The apparent inhibition constant (Ki) values were calculated
according to the following equation: Ki ) IC50/(1 + S/K), where
S is the concentration of labeled E2 and K is the Kd value of E2
(0.027 nM) for the estrogen receptor.
(16) (a) Couse, J . F.; Korach, K. S. Estrogen Receptor Null Mice:
What Have We Learned and Where Will They Lead Us? Endocr.
Rev. 1999, 20, 358-417. (b) Hewitt, S. C.; Couse, J . F.; Korach,
K. S. Estrogen Receptor Transcription and Transactivation.
Estrogen Receptor Knockout Mice: What Their Phenotypes
Reveal about Mechanisms of Estrogen Action. Breast Cancer Res.
2000, 2, 345-352.
(21) In this experiment, coadministration (3 mg/kg, sc) of ICI-182780,
a pure antiestrogen, reduced the cholesterol-lowering effect of
1 (0.2 mg/kg, po) by 64%, which is evidence that the in vivo
activity of 1 was mediated through the ER.
(22) (a) J elinek, J .; Kappen, A.; Scho¨nbaun, E.; Lomax, P. A Primate
Model of Human Postmenopausal Hot Flushes. J . Clin. Endo-
crinol. Metab. 1984, 59, 1224-1228. (b) Kobayashi, T.; Tamura,
M.; Hayashi, M.; Katsuura, Y.; Tanabe, H.; Ohta, T.; Komoriya,
K. Elevation of Tail Skin Temperature in Ovariectomized Rats
in Relation to Menopausal Hot Flushes. Am. J . Physiol.: Regul.,
Integr. Comp. Physiol. 2000, 278, R863-R869. (c) Hosono, T.;
Chen, X.-M.; Miyatsuji, A.; Yoda, T.; Yoshida, K.; Yanase-
fujiwara, M.; Kanosue, K. Effects of Estrogen on Thermoregu-
latory Tail Vasomotion and Heat-Escape Behavior in Freely
Moving Female Rats. Am. J . Physiol.: Regul., Integr. Comp.
Physiol. 2001, 280, R1341-R1347. (d) Berendsen, H. H. G.;
Weekers, A. H. J .; Kloosterboer, H. J . Effect of Tibolone and
Raloxifene on the Tail Temperature of Oestrogen-Deficient Rats.
Eur. J . Pharmacol. 2001, 419, 47-54.
(23) (a) Simpkins, J . W.; Katovich, M. J .; Song, I.-C. Similarities
between Morphine Withdrawal in the Rat and the Menopausal
Hot Flush. Life Sci. 1983, 32, 1957-1966. (b) Katovich, M. J .;
Simpkins, J . W.; Berglund, L. A.; O’Meara, J . Regional Skin
Temperature Changes in a Rat Model for the Menopausal Hot
Flush. Maturitas 1986, 8, 67-76. (c) Merchenthaler, I.; Funk-
houser, J . M.; Carver, J . M.; Lundeen, S. G.; Ghosh, K.;
Winneker, R. C. The Effect of Estrogens and Antiestrogens in a
Rat Model for Hot Flush. Maturitas 1998, 30, 307-316.
(24) (a) Qu, Q.; Zheng, H.; Dahllund, J .; Laine, A.; Cockcroft, N.; Peng,
Z.; Koskinen, M.; Hemminki, K.; Kangas, L.; Va¨a¨na¨nen, K.;
Ha¨rko¨nen, P. Selective Estrogenic Effects of a Novel Triphenyl-
ethylene Compound, FC1271a, on Bone, Cholesterol Level, and
Reproductive Tissues in Intact and Ovariectomized Rats. En-
docrinology 2000, 141, 809-820. (b) Sato, M.; Turner, C. H.;
Wang, T.; Adrian, M. D.; Rowley, E.; Bryant, H. U.
LY353381.HCl: A Novel Raloxifene Analog with Improved
SERM Potency and Efficacy in Vivo. J . Pharmacol. Exp. Ther.
1998, 287, 1-7.
(25) Kanemura, Y.; Mori, H.; Kobayashi, S.; Islam, O.; Kodama, E.;
Yamamoto, A.; Nakanishi, Y.; Arita, N.; Yamasaki, M.; Okano,
H.; Hara, M.; Miyake, J . Evaluation of in Vitro Proliferative
Activity of Human Fetal Neural Stem/Progenitor Cells Using
Indirect Measurements of Viable Cells Based on Cellular
Metabolic Activity. J . Neurosci. Res. 2002, 69, 869-879.
(26) The stimulatory activities of the compounds were estimated from
their percent maximal increase relative to a maximal response
of E2 (E2 ) 100% at 0.1 nM): 1, 27% (100 nM); RAL, 26% (0.1
nM); TAM, 34% (0.1 nM). The inhibitory activities were esti-
mated from IC30 values in the presence of 0.1 nM of E2: 1, 1200
nM; RAL, 5.1 nM; TAM, 8.2 nM.
J M034134+