202
T. Borowiak et al. / Journal of Molecular Structure 833 (2007) 197–202
[2] S. Adisakwattana, K. Sookkongware, S. Roengsumran, A. Petsom,
N. Ngamrojnavanich, W. Chavasiri, S. Deesamer, S. Yibchok-anun,
Bioorg. Med. Chem. Lett. 14 (2004) 2893.
[3] H. Takahashi, S. Sou, R. Yamasaki, M. Sodeoka, Y. Hashimoto,
Chem. Pharm. Bull. 48 (2000) 1494.
[4] N. Puviarasan, V. Arjunan, S. Mohan, Turk. J. Chem. 26 (2002)
323.
[5] F.H. Allen, C.A. Baalham, J.P.M. Lommerse, P.R. Raithby, Acta
Crystallogr. B 54 (1998) 320.
[6] J.P.M. Lommerse, A.J. Stone, R. Taylor, F.H. Allen, J. Am. Chem.
Soc. 118 (1996) 3108.
[7] F. Zordan, L. Brammer, P. Sherwood, J. Am. Chem. Soc. 127 (2005)
5979.
[8] S.L. Price, A.J. Stone, J. Lucas, R.S. Rowland, A.E. Thornley, J. Am.
Chem. Soc. 116 (1994) 4910.
[9] G.R. Desiraju, R. Parthasarathy, J. Am. Chem. Soc. 111 (1989) 8725.
[10] O.V. Grineva, P.M. Zorky, Cryst. Rep. 45 (2000) 633.
[11] V.R. Pedireddi, D.S. Reddy, B.S. Goud, D.C. Craig, A.D. Rae, G.R.
Desiraju, J. Chem. Soc. Perkin Trans. 2 (1994) 2353.
[12] D.M.Y. Barrett, I.A. Kahwa, J.T. Mague, G.I. McOherson, J. Org.
Chem. 60 (1995) 5946.
[13] D.M.Y. Barrett, I.A. Kahwa, D.J. Williams, Acta Crystallogr. C 52
(1996) 2069.
[14] D.M.Y. Barrett, I.A. Kahwa, B. Raduchel, A.J.P. White, D.J.
¨
Williams, J. Chem. Soc. Perkin Trans. 2 (1998) 1851.
[15] R.C. Howell, S.H. Edwards, A.S. Gajadhar-Plummer, I.A. Kahwa,
G.L. McPherson, J.T. Mague, A.J.P. White, D.J. Williams, Molecules
8 (2003) 565, G4.
onance lines for other aliphatic carbon atoms are observed
between 20 and 40 ppm.
The proton chemical shift assignments are based on the
2D COSY experiments, in which the proton–proton con-
nectivity is observed through the off-diagonal peaks in
the counter plot. The 2D heteronuclear shifts correlated
counter map (HETCOR) has been used to identify reso-
nance signals in the 13C NMR spectra.
The experimental chemical shifts in CDCl3 and the
GIAO shielding constants calculated for N-n-butyltetra-
chlorophthalimide are listed in Table 5. The correlations
between the experimental 1H and 13C chemical shifts (dexp
)
and the computed screening constants (rcalc) are shown in
Fig. 7. For 1H and 13C the correlation is linear and
described by the following equation:
dexp ¼ A ꢀ rcalc þ B
Values of the slope (AC = 1.0366, AH = 1.0329) and inter-
cept (BC = ꢁ2.7491, BH = ꢁ0.09138) were determined
through a fit of the computed shielding constants to the
experimental chemical shifts.
The very good correlation coefficients (r2 = 0.99221) for
1H and (r2 = 0.99726) for 13C correlations confirm the opti-
mized geometry of (1).
[16] F.H. Allen, Acta Crystallogr. B 58 (2002) 380.
[17] Oxford Diffraction Poland, CrysAlisCCD, CCD data collection GUI,
version 1.171, 2003.
4. Conclusions
[18] Oxford Diffraction Poland, CrysAlisRED, CCD data reduction GUI,
version 1.171, 2003.
The molecular and crystal structures of N-n-butyltetra-
chlorophthalimide (1) have been determined by X-ray dif-
fraction and by the B3LYP calculations.
[19] G.M. Sheldrick, Acta Crystallogr. A 46 (1990) 467.
[20] G.M. Sheldrick, SHELXL97, Program for the Refinement of Crystal
Structures, University of Go¨ttingen, Germany, 1997.
[21] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb,
J.R. Cheeseman, V.G. Zakrzewski, A.J. Jr. Montgomery, R.E.
Stratmann, J.C. Burant, S. Dapprich, J.M. Millam, A.D. Daniels,
K.N. Kudin, M.C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi,
R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J.
Ochterski, G.A. Petersson, P.Y. Ayala, Q. Cui, K. Morokuma, D.K.
Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J. Cioslow-
ski, J.V. Ortiz, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I.
Komaromi, R. Gomperts, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-
Laham, C.Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe,
P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, J.L. Andres, C.
Gonzalez, M. Head-Gordon, E.S. Replogle, J.A. Pople, GAUSSIAN
98, Revision A 6 Gaussian, Inc., Pittsburg, PA, 1998.
[22] A.D. Becke, J. Chem. Phys. 98 (1993) 5648.
The main driving force for the supramolecular structure
are halogen bonds C–Clꢀ ꢀ ꢀO and intermolecular Clꢀ ꢀ ꢀCl
interactions. The first type of interactions generates centro-
symmetric molecular tapes and the Clꢀ ꢀ ꢀCl interactions
connect the tapes into planar sheets. The sheets in turn,
are positioned one over another and connected via weak
electrostatic interactions of the Cd+ꢀ ꢀ ꢀCldꢁ type.
FT-IR spectra are consistent with the observed structure
in the crystal. The good correlations between the experi-
1
mental 13C and H chemical shifts in CDCl3 solution of
(1) and GIAO/B3LYP/6–31G(d,p) calculated isotropic
shielding tensors (dexp = A Æ rcalc + B) have confirmed the
optimized geometry of (1).
[23] P.J. Stephens, F.J. Devlin, C.F. Chabalowski, M.J. Frisch, J. Phys.
Chem. 98 (1994) 11623.
[24] W.J. Hehre, L. Random, P.V.R. Schleyer, J.A. Pople, Ab Initio
Molecular Orbital Theory, Wiley, New York, 1986.
Acknowledgement
[25] L.-S. Zhou, Y.-Q. Feng, B. Gao, D.-X. Shi, X.-F. Li, Acta
Crystallogr. E 59 (2003) o1066.
[26] X.-G. Liu, Y.-Q. Feng, W. Wang, Z.-P. Liang, G. Yang, Acta
Crystallogr. E 61 (2005) o1316.
This work was supported by the funds from Adam
Mickiewicz University, Faculty of Chemistry.
[27] X.-G. Liu, Y.-Q. Feng, P. Wu, X. Chen, F. Li, Acta Crystallogr. E 60
(2004) o2293.
References
[28] S.W. Ng, Acta Crystallogr. C 48 (1992) 1694.
[1] S. Sou, S. Mayumi, H. Takahashi, R. Yamasaki, S. Kadoya, M.
Sodeoka, Y. Hashimoto, Bioorg. Med. Chem. Lett. 10 (2000)
1081.
[29] N. Ramasubbu, R. Parthasarathy, P. Murray-Rust, J. Am. Chem.
Soc. 108 (1986) 4308.
[30] I. Hargittai, Pure Appl. Chem. 61 (1989) 651.