C O M M U N I C A T I O N S
data for 3, 6, and 7 (PDF). This material is available free of charge via
References
(1) (a) Cyclopropanes and Related Rings. de Meijere, A., Ed.; Chem. ReV.
2003, 103, 931-1625. (b) Carbocyclic Three-Membered Ring Compounds.
Methods of Organic Chemistry (Houben-Weyl); de Meijere, A., Ed.;
Thieme: Stuttgart; 1997; Vol. E17a-c. (c) The Chemistry of the Cyclo-
propyl Group; Rappoport, Z., Ed.; Wiley: Chichester, 1995; Vol. 2.
(2) Beckhaus, H.-D.; Ru¨chardt, C.; Kozhushkov, S. I.; Belov, V. N.; Verevkin,
S. P.; de Meijere, A. J. Am. Chem. Soc. 1995, 117, 11854-11860.
(3) de Meijere, A.; Kozhushkov, S. I. Chem. ReV. 2000, 100, 93-142.
(4) (a) von Seebach, M.; Kozhushkov, S. I.; Boese, R.; Benet-Buchholz, J.;
Yufit, D. S.; Howard, J. A. K.; de Meijere, A. Angew. Chem. 2000, 112,
2617-2620; Angew. Chem., Int. Ed. 2000, 39, 2495-2498. (b) de Meijere,
A.; von Seebach, M.; Zo¨llner, S.; Kozhushkov, S. I.; Belov, V. N.; Boese,
R.; Haumann, T.; Benet-Buchholz, J.; Yufit, D. S.; Howard, J. A. K.
Chem.-Eur. J. 2001, 7, 4021-4034.
(5) (a) Lammertsma, K.; Vlaar, M. J. M. Eur. J. Org. Chem. 2002, 1127-
1138. (b) Mathey, F.; Tran Huy, N. H.; Marinetti, A. HelV. Chim. Acta
2001, 84, 2938-2957.
Figure 2. Displacement ellipsoid plot (50%) of 7 (molecule one of two).
Selected bond lengths [Å] and angles [deg]: P1-C1 1.805(6), P1-C12
1.877(5), C1-C8 1.339(7), C2-C5 1.524(7), C9-C12 1.539(7); C1-P1-
C12 89.2(3).
(6) Lammertsma, K.; Wang, B.; Hung, J.-T.; Ehlers, A. W.; Gray, G. M. J.
Am. Chem. Soc. 1999, 121, 11650-11655.
(7) (a) Huy, N. H. T.; Mathey, F. Phosphorus, Sulfur Silicon Relat. Elem.
1990, 47, 477-481. (b) Hung, J.-T.; Yang, S.-W.; Gray, G. M.;
Lammertsma, K. J. Org. Chem. 1993, 58, 6786-6790.
Scheme 3. Formation of 3 and 7 under CuCl Catalysis
(8) Marinetti, A.; Mathey, F.; Fischer, J.; Mitschler, A. J. Chem. Soc., Chem.
Commun. 1984, 45-46.
(9) Deschamps, B.; Mathey, F. Synthesis 1995, 8, 941-943.
(10) Marinetti, A.; Charrier, C.; Mathey, F.; Fischer, J. Organometallics 1985,
4, 2134-2138.
(11) Li, X.; Robinson, K. D.; Gaspar, P. P. J. Org. Chem. 1996, 61, 7702-7710.
(12) 6: C20H21P, Fw ) 292.34, colorless needle, 0.46 × 0.36 × 0.09 mm3,
temperature ) 150(2) K, monoclinic, P21/m (No. 11), a ) 7.8462(1), b
) 12.9734(2), c ) 8.7058(1) Å, â ) 115.6968(6)°, V ) 798.537(18) Å3,
Z ) 2, Dx ) 1.216 g/cm3. No absorption correction (µ ) 0.164 mm-1).
15 383 measured reflections, 1913 reflections were unique [(sin θ/λ)max
) 0.65 Å-1]. 138 refined parameters. R-values [I > 2σ(I)]: R1 ) 0.0307,
wR2 ) 0.0784. R-values [all refl.]: R1 ) 0.0354, wR2 ) 0.0812. GOF
) 1.047. 7: C25H21O5PW, Fw ) 616.24, colorless plate, 0.09 × 0.09 ×
0.03 mm3, temperature ) 150(2) K, orthorhombic, Pca21 (no. 29), a )
18.9647(1), b ) 11.3278(1), c ) 21.7733(2) Å, V ) 4677.52(6) Å3, Z )
other products, including 7 (6%) (Scheme 3).16 The structure of 7,
the first 2-phosphabicyclo[3.2.0]hept-1(5)-ene derivative,17 spiro-
cyclopropanated at each carbon, was established by single-crystal
X-ray crystallography (Figure 2).12
8, Dx ) 1.750 g/cm3. Analytical absorption correction (µ ) 5.041 mm-1
,
0.58-0.89 transmission). 80 568 measured reflections, 10 736 reflections
were unique [(sin θ/λ)max ) 0.65 Å-1]. 577 refined parameters. Flack
parameter x ) -0.022(5). R-values [I > 2σ(I)]: R1) 0.0285, wR2 )
0.0378. R-values [all refl.]: R1 ) 0.0450, wR2 ) 0.0405. GOF ) 0.975.
(See Supporting Information for crystal structure determinations.)
(13) (a) Curtiss, L. A.; Redfern, P. C.; Raghavachari, K.; Rassolov, V.; Pople,
J. A. J. Chem. Phys. 1999, 110, 4703-4709. (b) Frisch, M. J.; Trucks, G.
W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.;
Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J.
C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M.
C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci,
B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.;
Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.;
Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov,
B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.;
Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.;
Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson,
B. G.; Chen, W.; Wong, M. W.; Andres, J. L.; Head-Gordon, M.; Replogle,
E. S.; Pople, J. A. Gaussian 98, revision A.11.3; Gaussian, Inc.: Pittsburgh,
PA, 2002. (c) See Supporting Information.
The formation of 7 is attributed to the influence of CuCl on the
cycloaddition process as 3 converts with added CuCl only slowly
in refluxing toluene to 7 and other products. This CuCl-catalyzed
cycloaddition behavior concurs with a recent analysis suggesting
that a CuCl-alkene complex facilitates the fragmentation of 1 to
give a reactive [PhP(Cl)W(CO)5]-Cu-alkene intermediate that
subsequently undergoes an SN2-type addition with alkenes.18 This
bulky Cu-containing reagent likely hampers the concerted [1+2]-
cycloaddition, thereby enabling the formation of zwitterion 8, which
can ring-close to 3 but also rearrange to 9 in analogy to the
cyclopropanation reaction of 2 with N2CHCO2Et in which both
products were obtained.4b However, contrasting its stable hydro-
carbon analogue, the more reactive PdC bond of 9 enables a
subsequent [1,3]-sigmatropic shift19 to give 7. This conversion is
19.9 kcal/mol exothermic at B3LYP/6-31G* for the parent system
(H for Ph, no W(CO)5).20
In conclusion, a highly strained, thermally stable (up to 150 °C)
branched phospha[7]triangulane was synthesized from second-
generation bicyclopropylidene 2 and phosphinidene [Ph-Pd
W(CO)5], followed by demetalation in refluxing xylene. Bulkier
transient CuCl-alkene-complexed phosphinidene gave also a
2-phosphabicyclo[3.2.0]hept-1(5)-ene. Spirocyclopropane-annela-
tion is stabilizing both of these novel compounds.
(14) Orbital energies at MP2/6-31G*.13b The lowest ionization energies (π-
IEv) determined by PE spectroscopy are 8.93 eV for bicyclopropylidene
(Gleiter, R.; Haider, R.; Conia, J.-M.; Barnier, J.-P.; de Meijere, A.; Weber,
W. J. Chem. Soc., Chem. Commun. 1979, 130-132. Hofland, A.; de Boer,
Th. J. Recl. TraV. Chim. Pays-Bas 1987, 106, 558-562. Gleiter, R.;
Spanget-Larson, J. In AdVances in Strain in Organic Chemistry; Halton,
B., Ed.; JAI Press: London, 1992; Vol. 2, p 143ff), 8.70 eV for
1-(cyclopropylidene)spiropentane, and 8.50 eV for 7-(cyclopropylidene)-
dispiro-[2.0.2.1]heptane) (Gleiter, R.; Kozhushkov, S. I.; de Meijere, A.,
unpublished results).
(15) Marinetti, A.; Mathey, F. Organometallics 1984, 3, 456-461.
(16) A byproduct in the crude reaction mixture [ca. 20%; δ(31P) ) 119.5, 1JP-W
) 254.4 Hz] did not survive workup.
(17) To our knowledge, only a 3-phosphabicyclo[3.2.0]heptene has been
reported earlier: Quin, L. D.; Middlemas, E. D. J. Am. Chem. Soc. 1977,
99, 8370-8371.
(18) Lammertsma, K.; Ehlers, A. W.; McKee, M. L. J. Am. Chem. Soc. 2003,
125, 14750-14759.
Acknowledgment. This work was supported by The Nether-
lands Foundation for Chemical Sciences (CW) with financial aid
from The Netherlands Organization for Scientific Research (NWO)
and the Fonds der Chemischen Industrie. We are grateful to the
companies BASF AG, Bayer AG, Chemetall GmbH, and Degussa
AG for generous gifts of chemicals.
(19) Bulo, R. E.; Ehlers, A. W.; Grimme, S.; Lammertsma, K. J. Am. Chem.
Soc. 2002, 124, 13903-13910. This rearrangement of 9 is a heteroanalogue
of the vinylcyclopropane-cyclopentene rearrangement: Baldwin, J. E. In
The Chemistry of the Cyclopropyl Group; Rappoport, Z., Ed.; Wiley:
Chichester, 1995; Vol. 2, pp 469-494. Baldwin, J. E. J. Comput. Chem.
1998, 19, 222-231. Baldwin, J. E. Chem. ReV. 2003, 103, 1197-1212.
(20) The geometries of 9′ and 7′ (PH instead of PhPW(CO)5) were optimized
at the B3LYP/6-31G* level (see Supporting Information).13b
Supporting Information Available: Crystallographic data (CIF)
of 6 and 7, experimental details and spectroscopic and computational
JA031648P
9
J. AM. CHEM. SOC. VOL. 126, NO. 10, 2004 3051