974
C. K. Dong et al. / Bioorg. Med. Chem. Lett. 19 (2009) 972–975
undetermined, therefore additional work is required to identify
specific inhibitors of pfNDH2 for further biochemical
characterization.47
Acknowledgments
The authors thank Ralph Mazitschek for suggestions and advice.
This work was supported by NICHD K12-HD000850 (J.D.D.), and by
the NSF Graduate Research Fellowship Program (V.P.), and Harvard
Malaria Initiative (D.F.W.).
Figure 1. Chemical structures of (A) DPI, (B) IDP, and (C) HDQ.
Supplementary data
Supplementary data associated with this article can be found, in
crude lysate fractions (IC50 = 0.24 0.03 and 5.99 0.36, respec-
tively), and both show efficacy against whole parasite prolifera-
tion.26 It has been suggested that the antimalarial mechanisms of
DPI, IDP, and HDQ may be attributed to the inhibition of pfNDH2
activity, however, dose–effect profiles using purified recombinant
pfNDH2 did not corroborate these findings. In fact, these com-
pounds did not inhibit pfNDH2 activity at concentrations of up to
References and notes
1. World malaria situation in 1994. Part I. Population at risk. Wkly Epidemiol. Rec.
1997, 72(36), 269–274.
2. Cadigan, F. C., Jr.; Sadudee, N.; Bourke, A. T.; Gould, D. J.; Winter, P. E. Trans. Roy.
Soc. Trop. Med. Hyg. 1968, 62, 562.
10 lM (Table 2). Both DPI and IDP are well-known flavoprotein
3. Mahoney, L. E. Lancet 1968, 2, 1139.
oxidoreductase inhibitors, suggesting that previous observations
of reduction in NADH consumption using crude parasite lysate
may have been due to inhibition of a different flavoenzyme-depen-
dent reaction.33–38
The chemical structure of HDQ is similar to that of the CoQn
substrate (Fig. 1) and thus, we speculated that its mode of action
might be related to another CoQn-dependent enzyme, P. falciparum
Type II dihydroorotate dehydrogenase (pfDHOD). pfDHOD is a
mitochondrial flavoenzyme that catalyzes the oxidation of dihy-
4. Peters, W. Lancet 1969, 2, 54.
5. Young, M. D.; Moore, D. V. Am. J. Trop. Med. Hyg. 1961, 10, 317.
6. Charles, L. J.; Van Der Kaay, H. J.; Vincke, I. H.; Brady, J. Bull. World Health Organ.
1962, 26, 103.
7. Clyde, D. F.; Shute, G. T. Trans. Roy. Soc. Trop. Med. Hyg. 1954, 48, 495.
8. Young, M. D.; Contacos, P. G.; Stitcher, J. E.; Millar, J. W. Am. J. Trop. Med. Hyg.
1963, 12, 305.
9. Hess, U.; Timmermans, P. M.; Jones, M. Am. J. Trop. Med. Hyg. 1983, 32, 217.
10. Rumans, L. W.; Dennis, D. T.; Atmosoedjono, S. Lancet 1979, 2, 580.
11. Vleugels, M. P.; Wetsteyn, J. C.; Meuwissen, J. H. Trop. Geogr. Med. 1982, 34, 263.
12. Srivastava, I. K.; Morrisey, J. M.; Darrouzet, E.; Daldal, F.; Vaidya, A. B. Mol.
Microbiol. 1999, 33, 704.
13. Vaidya, A. B. Mitochondrial Physiology as a Target for Atovaquone and Other
Antimalarials. In Malaria: Parasite Biology, Pathogenesis, and Protection;
Sherman, I. W., Ed.; American Society for Microbiology: Washington, DC,
1998; pp 355–368.
droorotate (L-DHO) using a FMN cofactor that is re-oxidized by
CoQn.39 The malaria parasite relies upon pfDHOD as it catalyzes
the rate-limiting step for de novo pyrimidine biosynthesis.40 Inhi-
bition of pfDHOD activity by HDQ was assessed in the presence of
14. Eschemann, A.; Galkin, A.; Oettmeier, W.; Brandt, U.; Kerscher, S. HDQ (1-
excess
Km,app (115
(Supplemental Scheme 2). HDQ inhibited pfDHOD activity with
an IC50 of 4.0 0.1 M (Table 2).
L-DHO (500
lM) and CoQ0 approximately equivalent to the
hydroxy-2-dodecyl-4(1H)quinolone),
mitochondrial alternative NADH dehydrogenase: evidence for a ping-pong
mechanism. J. Biol. Chem. 2005, 280, 3138.
a
high
affinity
inhibitor
for
lM), by coupling the assay to the chromogen, DCIP
15. Rasmusson, A. G.; Svensson, A. S.; Knoop, V.; Grohmann, L.; Brennicke, A. Plant
J. 1999, 20(1), 79.
l
16. de Vries, S.; Grivell, L. A. Eur. J. Biochem. 1988, 176, 377.
17. Kerscher, S. J.; Okun, J. G.; Brandt, U. J. Cell Sci. 1999, 112, 2347.
18. Melo, A. M.; Duarte, M.; Moller, I. M.; Prokisch, H.; Dolan, P. L.; Pinto, L.; Nelson,
M. A.; Videira, A. J. Biol. Chem. 2001, 276, 3947.
19. Bjorklof, K.; Zickermann, V.; Finel, M. FEBS Lett. 2000, 467, 105.
20. Matsushita, K.; Otofuji, A.; Iwahashi, M.; Toyama, H.; Adachi, O. FEMS Microbiol.
Lett. 2001, 204, 271.
21. Gomes, C. M.; Bandeiras, T. M.; Teixeira, M. J. Bioenerg. Biomembr. 2001, 33, 1.
22. Bandeiras, T. M.; Salgueiro, C.; Kletzin, A.; Gomes, C. M.; Teixeira, M. FEBS Lett.
2002, 531, 273.
23. Bandeiras, T. M.; Salgueiro, C. A.; Huber, H.; Gomes, C. M.; Teixeira, M. Biochim.
Biophys. Acta 2003, 1557, 13.
24. Melo, A. M.; Bandeiras, T. M.; Teixeira, M. Microbiol. Mol. Biol. Rev. 2004, 68,
603.
25. Vaidya, A. B.; Painter, H. J.; Morrisey, J. M.; Mather, M. W. Trends Parasitol. 2008,
24, 8.
26. Biagini, G. A.; Viriyavejakul, P.; O’Neill P, M.; Bray, P. G.; Ward, S. A. Antimicrob.
Agents Chemother. 2006, 50, 1841.
27. Krungkrai, J.; Kanchanarithisak, R.; Krungkrai, S. R.; Rochanakij, S. Exp. Parasitol.
2002, 100, 54.
A DD2 transgenic P. falciparum strain expressing a Type I cyto-
plasmic DHOD from S. cerevisiae (scDHOD) was used to pinpoint
the antimalarial mechanism of HDQ (Supplemental methods). Pain-
ter et al. had previously shown that the role of the mitochondrial
electron potential in the asexual stage of P. falciparum growth was
to maintain a pool of CoQn in order to sustain pfDHOD activity and
subsequent de novo pyrimidine biosynthesis.40 It was demonstrated
that addition of exogenous scDHOD results in a bypass of the endog-
enous electron transport chain through Complex III.40 ScDHOD uti-
lizes fumarate or NAD+ rather than CoQn to reoxidize the flavin
(FMN) prosthetic group in the second half-reaction of the redox pro-
cess.41–45 Therefore, inhibition of scDHOD activity was assessed in
the presence of excess
L
-DHO (500
lM) and fumarate approximately
equivalent to the Km,app (115
l
M), by coupling the assay to the chro-
mogen, DCIP (Supplemental Scheme 2). None of the compounds
tested inhibited scDHOD enzyme activity. Proliferation of the
scDHOD-expressing transgenic strain was unaffected by HDQ at a
28. Putt, K. S.; Hergenrother, P. J. Anal. Biochem. 2004, 326, 78.
29. de Macedo, C. S.; Uhrig, M. L.; Kimura, E. A.; Katzin, A. M. FEMS Microbiol. Lett.
2002, 207, 13.
30. Fisher, N.; Bray, P. G.; Ward, S. A.; Biagini, G. A. Trends Parasitol. 2007, 23, 305.
31. Li, W.; Mo, W.; Shen, D.; Sun, L.; Wang, J.; Lu, S.; Gitschier, J. M.; Zhou, B. PLoS
Genet. 2005, 1, e36.
drug concentration of up to 10
half-maximal growth inhibition at 0.24 0.09
l
M, while the parental strain showed
M (Table 2) (Supple-
l
mental Fig. 3). This rescued growth phenotype associated with the
addition of exogenous yeast DHOD argues that pfDHOD is the likely
in vivo target of HDQ rather than pfNDH2 as formerly described.
The results of this study have shown that previously
characterized NDH2 inhibitors are not effective inhibitors of
pfNDH2. Such an observation is not unexpected since inhibitors
for alternative rotenone-insensitive NADH dehydrogenases are
rare and non-specific.46 The essentiality of pfNDH2 remains
32. Saleh, A.; Friesen, J.; Baumeister, S.; Gross, U.; Bohne, W. Antimicrob. Agents
Chemother. 2007, 51, 1217.
33. Cross, A. R.; Jones, O. T. Biochem. J. 1986, 237, 111.
34. Stuehr, D. J.; Fasehun, O. A.; Kwon, N. S.; Gross, S. S.; Gonzalez, J. A.; Levi, R.;
Nathan, C. F. FASEB J. 1991, 5, 98.
35. Sanders, S. A.; Eisenthal, R.; Harrison, R. Eur. J. Biochem. 1997, 245, 541.
36. Tew, D. G. Biochemistry 1993, 32, 10209.
37. Luetjens, C. M.; Bui, N. T.; Sengpiel, B.; Munstermann, G.; Poppe, M.; Krohn, A.
J.; Bauerbach, E.; Krieglstein, J.; Prehn, J. H. J. Neurosci. 2000, 20, 5715.