Article
Biochemistry, Vol. 49, No. 31, 2010 6759
CONCLUSION
Badcock, K., Basham, D., Brown, D., Chillingworth, T., Connor, R.,
Davies, R., Devlin, K., Feltwell, T., Gentles, S., Hamlin, N., Holroyd,
S., Hornsby, T., Jagels, K., Krogh, A., McLean, J., Moule, S.,
Murphy, L., Oliver, K., Osborne, J., Quail, M. A., Rajandream,
M. A., Rogers, J., Rutter, S., Seeger, K., Skelton, J., Squares, R.,
Squares, S., Sulston, J. E., Taylor, K., Whitehead, S., and Barrell,
B. G. (1998) Deciphering the biology of Mycobacterium tuberculosis
from the complete genome sequence. Nature 393, 537–544.
8. Izumi, Y., Kano, Y., Inagaski, K., and Yamada, H. (1981) Char-
acterisation of biotin biosynthetic enzymes of Bacillus sphaericus: a
desthiobiotin producing bacterium. Agric. Biol. Chem 45, 1983–1989.
9. Van Arsdell, S. W., Perkins, J. B., Yocum, R. R., Luan, L., Howitt,
C. L., Chatterjee, N. P., and Pero, J. G. (2005) Removing a bottleneck
in the Bacillus subtilis biotin pathway: bioA utilizes lysine rather than
S-adenosylmethionine as the amino donor in the KAPA-to-DAPA
reaction. Biotechnol. Bioeng. 91, 75–83.
10. Phalip, V., Kuhn, I., Lemoine, Y., and Jeltsch, J. M. (1999) Char-
acterization of the biotin biosynthesis pathway in Saccharomyces
cerevisiae and evidence for a cluster containing BIO5, a novel gene
involved in vitamer uptake. Gene 232, 43–51.
11. Pinon, V., Ravanel, S., Douce, R., and Alban, C. (2005) Biotin
synthesis in plants. The first committed step of the pathway is
catalyzed by a cytosolic 7-keto-8-aminopelargonic acid synthase.
Plant Physiol.y 139, 1666–1676.
12. Stoner, G. L., and Eisenberg, M. A. (1975) Purification and properties
of 7,8-diaminopelargonic acid aminotransferase. J. Biol. Chem. 250,
4029–4036.
13. Sandmark, J., Eliot, A. C., Famm, K., Schneider, G., and Kirsch, J. F.
(2004) Conserved and nonconserved residues in the substrate binding
site of 7,8-diaminopelargonic acid synthase from Escherichia coli are
essential for catalysis. Biochemistry 43, 1213–1222.
14. Eliot, A. C., Sandmark, J., Schneider, G., and Kirsch, J. F. (2002) The
dual-specific active site of 7,8-diaminopelargonic acid synthase and
the effect of the R391A mutation. Biochemistry 41, 12582–12589.
15. Kack, H., Sandmark, J., Gibson, K., Schneider, G., and Lindqvist, Y.
(1999) Crystal structure of diaminopelargonic acid synthase: evolu-
tionary relationships between pyridoxal-50-phosphate-dependent
enzymes. J. Mol. Biol. 291, 857–876.
We have determined the crystal structures of two Mtb biotin bio-
synthetic enzymes, 7,8-diaminopelargonic acid synthase (DAPAS)
and dethiobiotin synthetase (DTBS). These enzymes are promis-
ing drug targets as the biotin biosynthesis pathway is required for
Mtb survival during infection but absent in humans. Moreover,
abolition of biotin production leads to irreversible cell death
when Mtb is starved for the compound, suggesting that inhibitors
of the pathway could be bactericidal.
Beyond their utility as potential drug targets, the Mtb DAPAS
and DTBS crystal structures yield basic biological insights into
their mechanisms of catalysis. The mode by which the DAPAS
recognizes dual substrates, the amino donor SAM and acceptor
KAPA, was not known despite the availability of the E. coli crystal
structure. The Mtb and E. coli DAPAS structures have similar
folds and conserved active site residues, making comparison
studies feasible. Superimposition of the Mtb DAPAS structure
bound to the SAM analogue sinefungin on the KAPA-complexed
E. coli enzyme indicates that the mechanism of substrate recogni-
tion for this enzyme is different than other aminotransferases.
Both Mtb and E. coli DAPAS have an active site tyrosine that is
critical for substrate interaction. Interestingly, the DAPAS of
certain Bacillus species lack this residue. We solved the apo and
KAPA-bound B. subtilis DAPAS structures to show that there is
an alternate KAPA binding pattern in the absence of the tyrosine.
The B. subtilis, E. coli, and Mtb DAPAS structures also reveal
the importance of the hydrogen bond network Tyr25-Tyr157-
Asp160 for maintenance of the active site structure.
The overall fold of Mtb DTBS differs from other organisms.
On the basis of our substrate- and product-bound DTBS struc-
tures, we identified key components required for catalysis, some
of which are not conserved in E. coli, and from these derived an
enzyme mechanism.
Finally, we have found that the active site of Mtb DTBS is
more solvent exposed than Mtb DAPAS, which has a tunneled
active site. Our characterization of the Mtb DAPAS and DTBS
active sites and of the mechanism by which they bind substrates
and products is a starting point in the design of new inhibitors
against these enzymes and, by extension, a metabolic pathway
that is critical for Mtb survival.
16. Sandmark, J., Mann, S., Marquet, A., and Schneider, G. (2002)
Structural basis for the inhibition of the biosynthesis of biotin by
the antibiotic amiclenomycin. J. Biol. Chem. 277, 43352–43358.
17. Huang, W., Lindqvist, Y., Schneider, G., Gibson, K. J., Flint, D., and
Lorimer, G. (1994) Crystal structure of an ATP-dependent carboxy-
˚
lase, dethiobiotin synthetase, at 1.65 A resolution. Structure 2,
407–414.
18. Kack, H., Sandmark, J., Gibson, K. J., Schneider, G., and Lindqvist,
Y. (1998) Crystal structure of two quaternary complexes of dethio-
biotin synthetase, enzyme-MgADP-AlF3-diaminopelargonic acid
and enzyme-MgADP-dethiobiotin-phosphate; implications for cata-
lysis. Protein Sci. 7, 2560–2566.
19. Kack, H., Gibson, K. J., Lindqvist, Y., and Schneider, G. (1998)
Snapshot of a phosphorylated substrate intermediate by kinetic
crystallography. Proc. Natl. Acad. Sci. U.S.A. 95, 5495–5500.
20. Alexeev, D., Baxter, R. L., Smekal, O., and Sawyer, L. (1995)
Substrate binding and carboxylation by dethiobiotin synthetase;a
kinetic and X-ray study. Structure 3, 1207–1215.
21. Ashkenazi, T., Widberg, A., Nudelman, A., Wittenbach, V., and
Flint, D. (2005) Inhibitors of biotin biosynthesis as potential herbi-
cides: part 2. Pest Manag. Sci. 61, 1024–1033.
22. Ashkenazi, T., Pinkert, D., Nudelman, A., Widberg, A., Wexler, B.,
Wittenbach, V., Flint, D., and Nudelman, A. (2007) Aryl chain
analogues of the biotin vitamers as potential herbicides. Part 3. Pest
Manag. Sci. 63, 974–1001.
23. Rendina, A. R., Taylor, W. S., Gibson, K., Lorimer, G., Rayner,
D., Lockett, B., Kranis, K., Wexler, B., Marcovici-Mizrahi, D.,
Nudelman, A., Nudelman, A., Marsilii, E., Chi, H., Wawrzak, Z.,
Calabrese, J., Huang, W., Jia, J., Schneider, G., Lindqvist, Y., and
Yang, G. (1999) The design and synthesis of inhibitors of dethiobiotin
synthetase as potential herbicides. Pestic. Sci. 55, 236–247.
24. Okami, Y., Kitahara, T., Hamada, M., Naganawa, H., and Kondo,
S. (1974) Studies on a new amino acid antibiotic, amiclenomycin.
J. Antibiot. (Tokyo) 27, 656–664.
25. Grundy, W. E., Whitman, A. O., Rdzok, E. G., Hanes, M. E., and
Sylvester, J. C. (1952) Actithiazic acid. I. Microbiological studies.
Antibiot. Chemother. II, 399–408.
26. Kitahara, T., Hotta, K., Yoshida, M., and Okami, Y. (1975) Bio-
logical studies of amiclenomycin. J. Antibiot. (Tokyo) 28, 215–221.
27. Hwang, K. (1952) Actithiazic acid: pharmacological Studies. Antibiot.
Chemother. II, 453–459.
ACKNOWLEDGMENT
The authors thank Tracey Musa and Siaska Castro for assi-
stance on the manuscript and Dr. Kimberly D. Grimes for the
preparation of acidomycin.
REFERENCES
1. Moss, J., and Lane, M. D. (1971) The biotin-dependent enzymes. Adv.
Enzymol. Relat. Areas Mol. Biol. 35, 321–442.
2. Gomez, J. E., and McKinney, J. D. (2004) M. tuberculosis persistence,
latency, and drug tolerance. Tuberculosis (Edinburgh) 84, 29–44.
3. Keer, J., Smeulders, M. J., Gray, K. M., and Williams, H. D. (2000)
Mutants of Mycobacterium smegmatis impaired in stationary-phase
survival. Microbiology 146 (Part 9), 2209–2217.
4. Betts, J. C., Lukey, P. T., Robb, L. C., McAdam, R. A., and Duncan,
K. (2002) Evaluation of a nutrient starvation model of Mycobacter-
ium tuberculosis persistence by gene and protein expression profiling.
Mol. Microbiol. 43, 717–731.
5. Sassetti, C. M., and Rubin, E. J. (2003) Genetic requirements for
mycobacterial survival during infection. Proc. Natl. Acad. Sci. U.S.A.
100, 12989–12994.
6. Chiang, S. L., and Mekalanos, J. J. (1998) Use of signature-tagged
transposon mutagenesis to identify Vibrio cholerae genes critical for
colonization. Mol. Microbiol. 27, 797–805.
7. Cole, S. T., Brosch, R., Parkhill, J., Garnier, T., Churcher, C., Harris,
D., Gordon, S. V., Eiglmeier, K., Gas, S., Barry, C. E., 3rd, Tekaia, F.,