SOLVOLYTIC REACTIVITY OF PYRIDINIUM IONS
[3] a) A. R. Katritzky, M. L. Lopez-Rodrigues, J. Marquet, J. Chem. Soc.
Perkin Trans. 2, 1984, 349–354. b) A. R. Katritzky, B. Brycki, J. Am.
Chem. Soc. 1986, 108, 7295–7299. c) A. R. Katritzky, C. H. Watson,
Z. Dega-Szafran, J. R. Eyler, J. Am. Chem. Soc. 1990, 112, 2471–2478.
[4] P. Madaan, V. K. Tyagi, J. Oleo Sci. 2008, 57, 197–215.
[5] J. Pernak, J. Rogoza, ARKIVOC 2000, 889–904.
4-Methoxy-4′-methylbenzhydrylpyridinium perchlorate (3b)
Mp 90.1–92.7 °C, 1H NMR (300 MHz, CDCl3): δ = 2.34 (s, 3H, ArCH3), 3.79 (s,
3H, ArOCH3), 6.91–7.47 (m, 9H, ArH + Ar2CH), 8.02–8.08 (t, 2H, Py+H),
8.50–8.55 (d, 1H, Py+H), 8.72–8.76 (d, 2H, Py+H). 13C NMR (75 MHz, CDCl3):
δ = 21.5 (ArCH3), 55.8 (ArOCH3), 76.7 (Ar2CH), 115.5, 126.9, 130.5, 130.7,
131.7, 132.7, 136.4, 140.4 (Ar), 144.3, 146.7, 161.1 (Py+C). HRMS (MALDI
TOF/TOF 4800): calcd. for C20H20NO 290.1544; found 290.1558.
[6] E. V. Dehmalow, S. S. Dehmalow, Phase Transfer Catalysis, 3rd Ed.,
VCH, Weinheim, New York, Basel, Cambridge, Tokyo, 1993.
[7] W. Śliwa, N-Substituted Salts of Pyridine and Related Compounds, Syn-
thesis, Properties,Applications, Academic press, Czestochowa, Poland,
1996.
4-Methoxybenzhydrylpyridinium perchlorate (4b)
[8] T. Maeda, Y. Manabe, M. Yamamoto, M. Yoshida, K. Okazaki, H.
Nagamune, H. Kourai, Chem. Pharm. Bull. 1999, 47, 1020–1023.
[9] F. Brotzel, B. Kempf, T. Singer, H. Zipse, H. Mayr, Chem. Eur. J. 2007,
13, 336–345.
[10] a) B. Denegri, A. Streiter, S. Jurić, A. R. Ofial, O. Kronja, H. Mayr, H.
Chem. Eur. J. 2006, 12, 1648–1656. b) Correction: B. Denegri, A.
Streiter, S. Jurić, A. R. Ofial, O. Kronja, H. Mayr, Chem. Eur. J. 2006,
12, 5415–5415. c) B. Denegri, A. R. Ofial, S. Jurić, A. Streiter, O. Kronja,
H. Mayr, Chem. Eur. J. 2006, 12, 1657–1666.
Mp 89.8–91.3 °C, 1H NMR (300 MHz, CDCl3): δ = 3.80 (s, 3H, ArOCH3),
6.92–6.94 (d, 2H, ArH), 7.18–7.40 (m, 8H, ArH + Ar2CH), 8.03–8.06 (t, 2H,
Py+H), 8.49–8.52 (d, 1H, Py+H), 8.72–8.74 (d, 2H, Py+H). 13C NMR
(75 MHz, CDCl3): δ = 55.8 (ArOCH3), 77.4 (Ar2CH), 115.5, 125.9, 126.5,
128.7, 130.0, 131.3, 135.8 (Ar), 144.4, 146.7, 161.2 (Py+C). HRMS (MALDI
TOF/TOF 4800): calcd. for C19H18NO 276.1380; found 276.1393.
[11] N. Streidl, B. Denegri, O. Kronja, H. Mayr, Acc. Chem. Res. 2010, 43,
4,4′-Dimethoxybenzhydryl-4-methylpyridinium perchlorate (1c)
1537–1549.
Mp 104.8–106.3 °C, 1H NMR (300 MHz, CDCl3): δ = 2.60–2.75 (d, 3H,
Py+CH3), 3.89 (s, 6H, ArOCH3), 7.00–7.03 (d, 4H, ArH), 7.25–7.28 (d, 4H,
ArH), 7.43 (s, 1H, Ar2CH), 7.90–7.92 (d, 2H, Py+H), 8.64–8.68 (d, 2H,
Py+H). 13C NMR (75 MHz, CDCl3): δ = 22.6 (Py+CH3), 55.8 (ArOCH3), 76.9
(Ar2CH), 115.4, 127.3, 129.1, 130.6 (Ar), 143.8, 160.0, 161.0 (Py+C). HRMS
(MALDI TOF/TOF 4800): calcd. for C21H22NO2 320.1650; found 320.1646.
[12] S. Jurić, B. Denegri, O. Kronja, J. Org. Chem. 2010, 75, 3851–3854.
[13] S. Jurić, B. Denegri, O. Kronja, J. Phys. Org. Chem. 2012, 25, 147–152.
[14] S. Minegishi, R. Loss, S. Kobayashi, H. Mayr, J. Am. Chem. Soc. 2005,
127, 2641–2649.
[15] M. Matić, S. Jurić, B. Denegri, O. Kronja, Int. J. Mol. Sci. 2012, 13,
2012–2024.
[16] D. B. Ledlie, W. Barber, F. Switzer, Tetrahedron Lett. 1977, 18,
607–610.
[17] D. N. Kevill, N. H. J. Ismail, M. J. D’Souza, J. Org. Chem. 1994, 59,
Kinetic measurements
6303–6312.
Solvolysis rate constants of compounds were measured titrimetrically by
means of a TIM 856 titration manager (Radiometer Analytical SAS Villeur-
banne Cedex, Lyon, France), using a Red Rod combined pH electrode.
Typically, 20–50 mg of the substrate was dissolved in 0.10–0.20 mL of di-
chloromethane and inject into the appropriate solvent that was
thermostated at the required temperature ( 0.01 °C). The liberated
pyridinium perchlorates were continuously titrated at pH = 7.00 by using
a 0.008-M solution of NaOH in the appropriate solvent. Individual rate
constants were obtained by the least-squares fitting of data to the first-
order kinetic equation for three to four half-lives. The rate constants were
averaged from at least three measurements.
[18] D. N. Kevill, S. W. Anderson, N. H. J. Ismail, J. Org. Chem. 1996, 61,
7256–7262.
[19] D. N. Kevill, S. W. Anderson, J. Org. Chem. 1991, 56, 1845–1850.
[20] D. N. Kevill, S. W. Anderson, J. Am. Chem. Soc. 1986, 108, 1579–1585.
[21] B. Denegri, O. Kronja, J. Org. Chem. 2007, 72, 8427–8433.
[22] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb,
J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A.
Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F.
Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara,
K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y.
Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Jr. Montgomery, J. E.
Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin,
V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A.
Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega,
J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo,
J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin,
R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma,
V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S.
Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J.
Cioslowski, D. J. Fox, Gaussian 09 (Revision A.02), Gaussian Inc.,
Wallingford, CT, 2009.
Quantum chemical calculations
Geometries of the most stable conformations of the sulfonium and
pyridinium ions were fully optimized at the M06-2X/6-311 + G(2d,p)
level of theory with Gaussian 09 program suite.[22] Using the same
level of theory, stationary points were verified as minima (no imaginary
frequencies) by frequency calculations, and natural bond orbital
charges were calculated. Influences of solvation effects are included
by employing the IEFPCM solvation model in all calculations.[23]
[23] a) J. Tomasi, B. Mennucci, E. Cancès, J. Mol. Struct. (Theochem) 1999,
464, 211–226. b) J. Tomasi, B. Mennucci, R. Cammi, Chem. Rev. 2005,
105, 2999–3093.
Acknowledgements
SUPPORTING INFORMATION
The authors gratefully acknowledge the financial support of
this research from the Croatian Science Foundation (under
the project number 1021). Computations were performed on
the Isabella cluster at Computing Centre SRCE of the University
of Zagreb (isabella.srce.hr), and we thank B. Denegri for com-
puter time used for this work.
Additional supporting information may be found in the online
version of this article at the publisher’s website.
Solvolytic activation parameters, additional solvolysis rate
constants at various temperatures, correlation of solvolysis rate
constants log k (25 °C) vs the electrofugality parameters Ef of X,
Y-substituted benzhydryl-4-chloropyridinium perchlorates, cor-
relation of Nf with σp for solvolysis of 4-X-substituted pyridines,
data of quantum chemical calculations and 1H and 13C NMR
spectra of X,Y-substituted benzhydrylpyridinium salts.
REFERENCES
[1] E. F. V. Scriven, Chem. Soc. Rev. 1983, 12, 129–161.
[2] G. C. Fu, Acc. Chem. Res. 2000, 33, 412–420.
J. Phys. Org. Chem. 2015, 28 314–319
Copyright © 2015 John Wiley & Sons, Ltd.
wileyonlinelibrary.com/journal/poc