J.-F. Pan, K. Chen / Tetrahedron Letters 45 (2004) 2541–2543
2543
2. (a) Martinez, I.; Andrews, A. E.; Emch, J. D.; Ndakala, A.
J.; Wang, J.; Howell, A. R. Org. Lett. 2003, 5, 399; (b)
Iwabuchi, Y.; Furukawa, M.; Esumi, T.; Hatakeyama, S.
Chem. Commun. 2001, 2030; (c) Iwabuchi, Y.; Sugihara,
T.; Esumi, T.; Hatakeyama, S. Tetrahedron Lett. 2001, 42,
7867.
Me
Me
Me
Me
H
O
N
N
O
H
O
O
N
Ph
N
Ph
O
O
O
A
R3N
OR
A'
3. For enantioselective Baylis–Hillman reaction, see: (a)
Imbriglio, J. E.; Vasbinder, M. M.; Miller, S. J. Org. Lett.
2003, 5, 3741; (b) Yang, K. S.; Lee, W.-S.; Pan, J.-F.;
Chen, K. J. Org. Chem. 2003, 68, 915; (c) Iwabuchi, Y.;
Nakatani, M.; Yokoyama, N.; Hatakeyama, S. J. Am.
Chem. Soc. 1999, 121, 10219; (d) Barrett, A. G. M.; Cook,
A. S.; Kamimura, A. Chem. Commun. 1998, 2533; (e)
Hayase, T.; Shibata, T.; Soai, K.; Wakatsuki, Y. Chem.
Commun. 1998, 1271; (f) For diastereoselective Baylis–
Hillman reaction, see: Krishna, P. R.; Ilangovan, A.;
Sharma, G. V. M. Tetrahedron: Asymmetry 2001, 12, 829;
(g) Yang, K.-S.; Chen, K. Org. Lett. 2000, 2, 729; (h)
Evans, M. D.; Kaye, P. T. Synth. Commun. 1999, 29, 2137;
(i) Basavaiah, D.; Gowriswari, V. V. L.; Sarma, P. K. S.;
Rao, P. D. Tetrahedron Lett. 1990, 31, 1621.
Figure 1. Proposed mechanism of the Baylis–Hillman reaction.
Me
Me
Me
Me
H2NNPth
Pb(OAc)4
OH O
OH O
N
N
OPh
OPh
NPth
O
(81%)
O
N
Ph
N
Ph
O
O
4c
5 (>95% de)
Scheme 2. Further functional group transformation of the Baylis–
Hillman adduct 4c.
4. (a) Kawahara, S.; Nakano, A.; Esumi, T.; Iwabuchi, Y.;
Hatakeyama, S. Org. Lett. 2003, 5, 3103; (b) Shi, M.; Xu,
Y.-M. Angew. Chem., Int. Ed. 2002, 41, 4503; (c) Shi, M.;
Xu, Y.-M. Eur. J. Org. Chem. 2002, 696; (d) Shi, M.; Xu,
Y.-M.; Zhao, G.-L.; Wu, X.-F. Eur. J. Org. Chem. 2002,
3666; (e) Aggarwal, V. K.; Castro, A. M. M.; Mereu, A.;
Adams, H. Tetrahedron Lett. 2002, 43, 1577; (f) Shi, M.;
Xu, Y.-M. Chem. Commun. 2001, 1876; (g) Balan, D.;
Adolfsson, H. J. Org. Chem. 2001, 66, 6498; (h) Richter,
H.; Jung, G. Tetrahedron Lett. 1998, 39, 2729.
phthalimide in the presence of lead tetraacetate, which
provides the corresponding N-phthalimidoaziridine (5)
in excellent diastereoselectivity. The structure of 5 was
initially assigned by 1H, 13C NMR, and HRMS analyses
and further confirmed by single crystal X-ray analysis
(Scheme 2).
In summary, the Baylis–Hillman reaction of N-glyo-
xyloyl camphorpyrazolidinone (2) with various a,b-
unsaturated carbonyls/nitrile proceeds smoothly to give
the corresponding 2-hydroxy-3-methylene succinic acid
derivative 4 in excellent diastereoselectivity. A pre-
liminary investigation of the 2-hydroxy-3-methylene
succinic acid derivative using 4c has demonstrated its
potential as a synthetic scaffold. A multifunctional array
of 2-hydroxy-3-methylene succinic acid derivatives can
be used for the construction of complex molecular
structures. This extends the synthetic application to the
versatile and general utility of chiral auxiliary 1. Further
applications of 5 and its derivatives are currently
underway.
5. Bauer, T.; Tarasiuk, J. Tetrahedron: Asymmetry 2001, 12,
1741.
6. (a) Cai, J.; Zhou, Z.; Zhao, G.; Tang, C. Org. Lett. 2002,
4, 4723; (b) Aggarwal, V. K.; Dean, D. K.; Mereu, A.;
Williams, R. J. Org. Chem. 2002, 67, 510; (c) Lee, W.-D.;
Yang, K.-S.; Chen, K. Chem. Commun. 2001, 1612.
7. (a) Fang, C. L.; Lee, W.-D.; Teng, N. W.; Sun, Y.-C.;
Chen, K. J. Org. Chem. 2003, 68, 9816; (b) Fang, C. L.;
Lee; Reddy, G. S.; Chen, K. J. Chin. Chem. Soc. 2003, 50,
1047; (c) Yang, K. S.; Chen, K. J. Org. Chem. 2001, 66,
1676; (d) Yang, K. S.; Lain, J. C.; Lin, C. H.; Chen, K.
Tetrahedron Lett. 2000, 41, 1453; (e) Lin, C. H.; Yang, K.
S.; Pan, J. F.; Chen, K. Tetrahedron Lett. 2000, 41, 6815.
8. Typical procedure for the preparation of N-glyoxyloyl
camphorpyrazolidinone (2): To a solution of oxalyl chlo-
ride (10.0 mL, 117 mmol) in CH2Cl2 (50 mL) was added a
solution of camphorpyrazolidinone (1) (3.0 g, 11.7 mmol)
in CH2Cl2 dropwise at room temperature. The excess of
oxalyl chloride was removed in vacuo after stirring for
10 min and the residue was dried under high vacuum. The
residue was dissolved in benzene (20 mL) and Bu3SnH
(3.15 g, 11.7 mmol) was added dropwise at room temper-
ature. The reaction mixture was quenched with aqueous
NaHCO3 (200 mL) and extracted with CH2Cl2 (50 mL · 3).
The organic layers were combined and washed (brine),
dried (MgSO4), filtered, and concentrated in vacuo. The
crude product was purified by flash column chromatogra-
phy on silica gel, using hexanes/ethyl acetate 2:1 to give
N-glyoxyloyl camphorpyrazolidinone (3.07 g, 84%).
9. (a) Bauer, T.; Chapuis, C.; Jezewski, A.; Kozak, J.;
Jurczak, J. Tetrahedron: Asymmetry 1996, 7, 1391; (b)
Bauer, T.; Chapuis, C.; Kozak, J.; Jurczak, J. Helv. Chim.
Acta 1989, 72, 482; (c) Jurczak, J.; Tkacz, M. J. Org.
Chem. 1979, 44, 3347.
Acknowledgements
This work is supported by the National Science Council
of the Republic of China (NSC 92-2113-M-003-017 and
NSC 92-2751-B-001-014-Y) and the National Taiwan
Normal University (ORD 91-2). The X-ray crystal data
are collected and processed by Taipei Instrumentation
Center, College of Science, National Taiwan University,
and National Taiwan Normal University are gratefully
acknowledged.
References and notes
1. For reviews of the Baylis–Hillman reaction, see: (a)
Basavaiah, D.; Rao, A. J.; Satyanarayana, T. Chem.
Rev. 2003, 103, 811; (b) Langer, P. Angew. Chem., Int. Ed.
2000, 39, 3049; (c) Ciganek, E. Org. React. 1997, 51, 201;
(d) Basavaiah, D.; Rao, D. P.; Hyma, R. S. Tetrahedron
1996, 52, 8001; (e) Drewes, S. E.; Roos, G. H. P.
Tetrahedron 1988, 44, 4653.
10. However, for camphorpyrazolidinone derived glyoxylic
oxime ether the s-trans conformation favored in the solid
state as indicated by single crystal X-ray analysis. Chen,
K. Unpublished results.