Organometallics
Article
PhSi(XPPh2)3 (X = CH2, O): synthesis, structure and catalytic
activity in the hydroboration of CO2. Dalton Trans. 2016, 45, 14774−
14788. (e) Espinosa, M. R.; Charboneau, D. J.; Garcia de Oliveira, A.;
Hazari, N. Controlling Selectivity in the Hydroboration of Carbon
Dioxide to the Formic Acid, Formaldehyde, and Methanol Oxidation
Levels. ACS Catal. 2019, 9, 301−314.
Bond Cleavage Reactions of Lignin Model Compounds. ChemCatCh-
em 2013, 5, 439−441.
(18) vom Stein, T.; Meuresch, M.; Limper, D.; Schmitz, M.;
̈
Holscher, M.; Coetzee, J.; Cole-Hamilton, D. J.; Klankermayer, J.;
Leitner, W. Highly Versatile Catalytic Hydrogenation of Carboxylic
and Carbonic Acid Derivatives using a Ru-Triphos Complex:
Molecular Control over Selectivity and Substrate Scope. J. Am.
Chem. Soc. 2014, 136, 13217−13225.
̈
(6) (a) Metsanen, T. T.; Oestreich, M. Temperature-Dependent
Chemoselective Hydrosilylation of Carbon Dioxide to Formaldehyde
(19) Phanopoulos, A.; Brown, N. J.; White, A. J. P.; Long, N. J.;
Miller, P. W. Synthesis, Characterization, and Reactivity of Ruthenium
Hydride Complexes of N-Centered Triphosphine Ligands. Inorg.
Chem. 2014, 53, 3742−3752.
(20) Wierschke, S. G.; Chandrasekhar, J.; Jorgensen, W. L.
Magnitude and Origin of the β-Silicon Effect on Carbenium Ions. J.
Am. Chem. Soc. 1985, 107, 1496−1500.
or Methanol Oxidation State. Organometallics 2015, 34, 543−546.
́
(b) Ríos, P.; Curado, N.; Lopez-Serrano, J.; Rodríguez, A. Selective
reduction of carbon dioxide to bis(silyl)acetal catalyzed by a PBP-
supported nickel complex. Chem. Commun. 2016, 52, 2114−2117.
(7) (a) Jiang, Y.; Blacque, O.; Fox, T.; Berke, H. Catalytic CO2
Activation Assisted by Rhenium Hydride/B(C6F5)3 Frustrated Lewis
PairsMetal Hydrides Functioning as FLP Bases. J. Am. Chem. Soc.
2013, 135, 7751−7760. (b) LeBlanc, F. A.; Piers, W. E.; Parvez, M.
Selective Hydrosilation of CO2 to a Bis(silylacetal) Using an Anilido
Bipyridyl-Ligated Organoscandium Catalyst. Angew. Chem., Int. Ed.
2014, 53, 789−792.
(8) Thenert, K.; Beydoun, K.; Wiesenthal, J.; Leitner, W.;
Klankermayer, J. Ruthenium-Catalyzed Synthesis of Dialkoxymethane
Ethers Utilizing Carbon Dioxide and Molecular Hydrogen. Angew.
Chem., Int. Ed. 2016, 55, 12266−12269.
(9) Schieweck, B. G.; Klankermayer, J. Tailor-made Molecular
Cobalt Catalyst System for the Selective Transformation of Carbon
Dioxide to Dialkoxymethane Ethers. Angew. Chem., Int. Ed. 2017, 56,
10854−10857.
̈
(10) Siebert, M.; Seibicke, M.; Siegle, A. F.; Krah, S.; Trapp, O.
Selective Ruthenium-Catalyzed Transformation of Carbon Dioxide:
An Alternative Approach toward Formaldehyde. J. Am. Chem. Soc.
2019, 141, 334−341.
(11) Phanopoulos, A.; Miller, P. W.; Long, N. J. Beyond Triphos
New hinges for a classical chelating ligand. Coord. Chem. Rev. 2015,
299, 39−60.
(12) (a) Petuker, A.; Reback, M. L.; Apfel, U.-P. Carbon/Silicon
Exchange at the Apex of Diphos- and Triphos-Derived Ligands
More Than Just a Substitute? Eur. J. Inorg. Chem. 2017, 2017, 3295−
3301. (b) Petuker, A.; Mebs, S.; Schuth, N.; Gerschel, P.; Reback, M.
L.; Mallick, B.; van Gastel, M.; Haumann, M.; Apfel, U.-P.
Spontaneous Si−C bond cleavage in (TriphosSi)-nickel complexes.
Dalton Trans. 2017, 46, 907−917. (c) Petuker, A.; Merz, K.; Merten,
C.; Apfel, U.-P. Controlled Flexible Coordination in Tripodal Iron(II)
Phosphane Complexes: Effects on Reactivity. Inorg. Chem. 2016, 55,
1183−1191.
(13) Neumeyer, F.; Lipschutz, M. I.; Tilley, T. D. Group 8
Transition Metal Complexes of the Tripodal Triphosphino Ligands
PhSi(CH2PR2)3 (R = Ph, iPr). Eur. J. Inorg. Chem. 2013, 2013, 6075−
6078.
(14) Schore, N. E.; Benner, L. S.; LaBelle, B. E. Indirect metal-metal
linkage: cyclic ferrocene complexes with a second metal linked via
remote phosphine functionality. Inorg. Chem. 1981, 20, 3200−3208.
(15) Herold, S.; Mezzetti, A.; Venanzi, L. M.; Albinati, A.; Lianza, F.;
Gerfin, T.; Gramlich, V. Synthetic methodologies for tripodal
phosphines. The preparation of MeSi(CH2PPh2)3 and n-BuSn-
(CH2PPh2)3 and a comparison of their rhodium(I) and ruthenium-
(II) coordination chemistry. The X-ray crystal structures of
[Rh(NBD){n-BuSn(CH2PPh2)3}](OTf) and [Rh(NBD){MeSi-
(CH2PPh2)3}](OTf). Inorg. Chim. Acta 1995, 235, 215−231.
́
(16) Campora, J.; Maya, C. M.; Matas, I.; Claasen, B.; Palma, P.;
Alvarez, E. A convenient synthesis of bis(phosphino)methanes:
́
Formation of a nickel(II) bis(phosphino)methane monoxide
complex. Inorg. Chim. Acta 2006, 359, 3191−3196.
(17) (a) Wesselbaum, S.; vom Stein, T.; Klankermayer, J.; Leitner,
W. Hydrogenation of Carbon Dioxide to Methanol by Using a
Homogeneous Ruthenium−Phosphine Catalyst. Angew. Chem., Int.
Ed. 2012, 51, 7499−7502. (b) vom Stein, T.; Weigand, T.; Merkens,
C.; Klankermayer, J.; Leitner, W. Trimethylenemethane-Ruthenium-
(II)-Triphos Complexes as Highly Active Catalysts for Catalytic C−O
F
Organometallics XXXX, XXX, XXX−XXX