F
Q.-X. Lou et al.
Cluster
Synlett
Angew. Chem. Int. Ed. 2015, 54, 4508. (e) Wei, M.-E.; Wang, L.-
H.; Li, Y.-D.; Cui, X.-L. Chin. Chem. Lett. 2015, 26, 1336. (f) Kim, J.
H.; Greßies, S.; Glorius, F. Angew. Chem. Int. Ed. 2016, 55, 5577.
(g) Li, Y.; Qi, Z.; Wang, H.; Yang, X.; Li, X. Angew. Chem. Int. Ed.
2016, 55, 11877. (h) Wu, Y.; Chen, Z.; Yang, Y.; Zhu, W.; Zhou, B.
J. Am. Chem. Soc. 2018, 140, 42. (i) Chen, X.; Wang, M.; Zhang, X.;
Fan, X. Org. Lett. 2019, 21, 2541. (j) Ng, F.-N.; Chan, C.-M.; Li, J.
B.; Sun, M. Z.; Lu, Y.-S.; Zhou, Z. Y.; Huang, B. L.; Yu, W.-Y. Org.
Biomol. Chem. 2019, 17, 1191. (k) Song, X.; Han, X.; Zhang, R.;
Liu, H.; Wang, J. Molecules. 2019, 24, 1884. (l) Guo, S.; Sun, L.; Li,
X.; Zhang, X.; Fan, X. Adv. Synth. Catal. 2020, 362, 913. (m) Yuan,
Y.; Guo, X.; Zhang, X.; Li, B.; Huang, Q. Org. Chem. Front. 2020, 7,
3146. (n) Wang, X.; Zhang, J.; He, Y.; Chen, D.; Wang, C.; Yang, F.;
Wang, W.; Ma, Y.; Szostak, M. Org. Lett. 2020, 22, 5187.
(7) (a) Ma, Y.-N.; Yang, S.-D. Chem. Rec. 2016, 16, 977. (b) Cui, Y.-M.;
Lin, Y.; Xu, L.-W. Coord. Chem. Rev. 2017, 330, 37. (c) Ma, Y.-N.;
Li, S.-X.; Yang, S.-D. Acc. Chem. Res. 2017, 50, 1480. (d) Zhang, Z.;
Dixneuf, P. H.; Soule, J.-F. Chem. Commun. 2018, 54, 7265.
(e) Zhou, C.-N.; Zheng, Z.-A.; Chang, G.; Xiao, Y.-C.; Shen, Y.-H.;
Lia, G.; Zhang, Y.-M.; Peng, W.-M.; Wang, L.; Xiao, B. Curr. Org.
Chem. 2019, 23, 103.
[Cp*IrCl2]2 (2.0 mg, 1.25 mol%), AgOTf (2.6 mg, 10 mol%), and
pivalic acid (10.2 mg, 0.1 mmol, 0.5 equiv) were added to an
oven-dried reaction tube containing a magnetic stirrer bar. The
tube was sealed, DCE (0.3 mL) was added from a syringe, and
the mixture was stirred at 50 °C (oil bath) for 20 min. A solution
of the diazo 1,3-dicarbonyl compound 2a (0.2 mmol, 1.0 equiv)
in DCE (1.0 mL) was then added over 4 h by using a peristaltic
pump. The mixture was stirred for a further 12 h then cooled to
r.t. The solvent was removed in vacuo, and the residue was puri-
fied by chromatography [silica gel, PE–EtOAc (3:1)] to give a
white solid; yield: 86.4 mg (90%).
1H NMR (400 MHz, CDCl3): = 8.12 (m, 3 H), 7.58–7.36 (m, 11
H), 7.31 (m, 4 H), 7.24–7.18 (m, 1 H), 7.05 (dd, J = 14.4, 7.4 Hz, 1
H), 1.03 (s, 9 H). 13C NMR (101 MHz, CDCl3): = 209.8, 195.0,
135.9, 134.2 (d, J = 13.1 Hz), 133.1, 132.7 (d, J = 9.7 Hz), 132.3,
132.2 (d, J = 2.8 Hz), 132.2, 132.1, 131.9 (d, J = 2.5 Hz), 131.8,
129.3, 128.9 (d, J = 100.8 Hz), 128.6 (dd, J = 13.6, 12.2 Hz), 128.4,
126.9 (d, J = 12.8 Hz), 58.8 (d, J = 3.6 Hz), 45.6, 27.0. 31P NMR
(162 MHz, CDCl3): = 34.3. HRMS (ESI): m/z [M + Na]+ calcd for
C31H29NaO3P: 503.1747; found: 503.1747.
(13) CCDC 20127547 contains the supplementary crystallographic
data for compound 3. The data can be obtained free of charge
from The Cambridge Crystallographic Data Centre via
(8) Liu, Z.; Wu, J.-Q.; Yang, S.-D. Org. Lett. 2017, 19, 5434.
(9) Jang, Y.-S.; Woźniak, Ł.; Pedroni, J.; Cramer, N. Angew. Chem. Int.
Ed. 2018, 57, 12901.
(10) Lou, Q.-X.; Niu, Y.; Qi, Z.-C.; Yang, S.-D. J. Org. Chem. 2020, 85,
14527.
(11) Further details of the base optimization, see the Supporting
Information.
(12) 2-[2-(Diphenylphosphoryl)phenyl]-4,4-dimethyl-1-phenyl-
pentane-1,3-dione (3): Typical Procedure
(14) For details, see the Supporting Information.
(15) Kitahara, K.; Mizutani, H.; Iwasa, S.; Shibatomi, K. Synthesis
2019, 51, 4385.
(16) Roy, O.; Riahi, A.; Hénin, F.; Muzart, J. Eur. J. Org. Chem. 2002,
3986.
(17) Zeng, L.; Lai, Z.; Cui, S. J. Org. Chem. 2018, 83, 14834.
Under an Ar atmosphere, Ph3P=O (1; 0.4 mmol, 2.0 equiv),
© 2021. Thieme. All rights reserved. Synlett 2021, 32, A–F