LETTER
Arabinosylamine in Asymmetric Syntheses of Chiral Piperidine Alkaloids
673
S
PivO
OPiv
S
OPiv
b
a
O
N
7e
8
PivO
Cl
OPiv
c
OPiv
O
N
N
H
H
9
10
PivO
OPiv
O
OPiv
OH
Scheme 5 Synthesis of enantiopure (+)-(2S,6R)-dihydropinidine
hydrochloride. Conditions: a) HSCH2CH2SH, BF3·OEt2, CH2Cl2, r.t.,
12 h, 81%; b) Raney nickel, H2, i-PrOH, 70 °C, 12 h, 73%; c) 1 N
HCl, MeOH, r.t., 48 h, quantitative.
Figure 2 X-ray structure of N-arabinosyl piperidinone 7a.
The observed cis-stereoselectivity of the 1,4-addition can
be explained considering the X-ray structure of 6d (see
Figure 1) showing its preferred conformation. Compared
to rotamer A, rotamer B (see Scheme 3) benefits from less
steric hindrance between the substituent in position 2 of
the heterocycle and the pivaloyl group at C-2 of the carbo-
hydrate. The front-side attack of the cuprate results in a
cis-substitution pattern.
References
(1) (a) Daly, J. W.; Garraffo, H. M.; Spande, T. F. In The
Alkaloids – Chemistry and Pharmacology, Vol. 43; Cordell,
G. A., Ed.; Academic Press: San Diego, 1993, 185.
(b) Daly, J. W. Nat. Prod. 1998, 61, 162. (c) Daly, J. W.;
Garraffo, H. M.; Spande, T. F. In Alkaloids – Chemical and
Biological Perspectives, Vol. 13; Pelletier, S. W., Ed.;
Pergamon: New York, 1999, 1.
(2) Bailey, P. D.; Millwood, P. A.; Smith, P. D. Chem. Commun.
1998, 1915.
(3) (a) Kobayashi, S.; Ishitani, H. Angew. Chem. Int. Ed. 1998,
37, 979. (b) Reding, M. T.; Buchwald, S. L. J. Org. Chem.
1998, 63, 6344.
Employing the reactions presented above, 2,6-disubsti-
tuted piperidine alkaloid (+)-dihydropinidine 1016 was
synthesized, which has already been a target of many
studies.17 For this purpose, the piperidinone derivative 7e
was converted into dithiolane 8 and subsequently treated
with Raney nickel to give the N-arabinosyl piperidine 9.
The enantiomerically pure alkaloid hydrochloride 10 was
released from the carbohydrate by mild acidolyzis with
dilute hydrochloric acid in methanol (Scheme 5). The
optical rotation value of 10 {[a]D25 +11.1, c 1, EtOH} was
in agreement with literature data17 {[a]D +11.6 to +14.2 in
EtOH for 10 and [a]D –9.1 to –12.7 in EtOH for the
enantiomer}17 and confirmed the absolute configuration.
(4) Weymann, M.; Pfrengle, W.; Schollmeyer, D.; Kunz, H.
Synthesis 1997, 1151.
(5) Kunz, H.; Pfrengle, W. Angew. Chem., Int. Ed. Engl. 1989,
28, 1067.
(6) (a) Kunz, H.; Sager, W. Angew. Chem., Int. Ed. Engl. 1987,
26, 557. (b) Kunz, H.; Sager, W.; Schanzenbach, D.;
Decker, M. Liebigs Ann. Chem. 1991, 649.
(7) (a) Kunz, H.; Pfrengle, W. J. Am. Chem. Soc. 1988, 110,
651. (b) Kunz, H.; Pfrengle, W.; Rück, K.; Sager, W.
Synthesis 1991, 1039.
Further transformations of N-arabinosyl dehydropiperidi-
nones to highly substituted chiral nitrogen heterocycles
are under investigation.
Acknowledgment
(8) (a) Laschat, S.; Kunz, H. Synlett 1990, 51. (b) Laschat, S.;
Kunz, H. J. Org. Chem. 1991, 56, 5883.
We wish to thank Dr. D. Schollmeyer, Institut für Organische
Chemie, Universität Mainz, for the X-ray analyses. B. K. is grateful
for being awarded the Adolf-Todt-Preis of the Adolf-Todt-Stiftung
of the Universität Mainz.
(9) Danishefsky, S. J. Am. Chem. Soc. 1974, 96, 7807.
(10) Weymann, M.; Schultz-Kukula, M.; Knauer, S.; Kunz, H.
Monatsh. Chem. 2002, 133, 571.
(11) Compoumd 6d: [a]D25 +66.6 (c 1, CHCl3). 1H NMR (200
MHz, CDCl3): d = 6.90 (d, 1 H, JH-6,H-5 = 7.3 Hz, CH=CH),
5.55 (t, 1 H, JH-2′,H-1′ = 9.5 Hz, JH-2′,H-3′ = 9.5 Hz, H-2′),
5.30–5.20 (m, 1 H, H-4′), 5.13 (dd, 1 H, JH-3′,H-2′ = 10.0 Hz,
JH-3′,H-4¢= 3.2 Hz, H-3′), 4.93 (d, 1 H, JH-5,H-6 = 7.3 Hz,
CH=CH), 4.44 (d, 1 H, JH-1′,H-2′ = 9.3 Hz, H-1′), 4.02 (dd, 1
H, JH-5′a,H-5¢b = 13.2 Hz, JH-5¢a,H-4¢ = 2.0 Hz, H-5′a), 3.80–3.70
(m, 1 H, PrCHN), 3.67 (d, 1 H, JH-5′b,H-5′a = 13.2 Hz, H-5′b),
2.60 (dd, 1 H, JH-3a,H-3b = 16.6 Hz, JH-3a,H-2 = 6.3 Hz,
CHHC=O), 2.34 (d, 1 H, JH-3b,H-3a = 16.6 Hz, CHHC=O),
Synlett 2004, No. 4, 671–674 © Thieme Stuttgart · New York