42
O. O. Kolodiazhna et al. / Tetrahedron: Asymmetry 24 (2013) 37–42
1.45 (m, 2H, CH2), 1.45–1.80 (m, 4H, CH2), 1.19 (m, 2H, CH2), 2.27
(m, 1H, OH), 3.16 (m, 1H, CHI), 4.71 (s, 1H, CHOH). 13C NMR
(125.74 MHz, CDCl3): d 21.93 s, 24.48 s, 32.23 s, 34.12 s, 46.51 s,
71.01 s.
4.5.1.2. 2-Cyclopentenyl acetate (R)-14.
The evaporation in
vacuo should be carried out with caution because of the volatility
of the product. The 2-cyclopentenyl acetate was purified by flash
chromatography (pentane–ether). Colorless oil. Yield 25%,
½
a 2D0
ꢂ
¼ þ170 (c 1, CHC13) {lit.24a
½
a 2D0
ꢂ
¼ ꢀ83:8 (c 1.09, CH2C12),
4.3.6.2. (+)-2-Bromocyclopentyl acetate (1R,2S)-10b.
Yield
41% ee for the (S)-absolute configuration}. 1H NMR (500 MHz,
CDCl3): d 6.09–6.07 (1H, m), 5.81–5.79 (1H, m), 5.68–5.65 (1H,
m), 2.52–2.47 (1H, m), 2.31–2.23 (2H, m,), 2.01 (3H, s,), 1.81–
1.75 (1H, m,). 13C NMR (125.74 MHz, CDCl3): d 170.9, 137.5,
129.1, 80.4, 30.9, 29.6, 21.2.
42%,
½
a 2D0
ꢂ
¼ þ51:0 (c 1, CHCl3), Rf 0.36 (CHCl3). 1H NMR
(500 MHz, CDCl3): d 1.3–1.45 m (2H, CH2), 1.55–1.7 m (2H, CH2),
1.8–2.0 m (2H,CH2), 2.12 s (3H, CH3), 4.46 m (1H, CHBr), 4.97 m
(1H CHOAc). 13C NMR (125.74 MHz, CDCl3): d 19.75 s, 20.92 s,
27.77 s, 33.50 s, 53.12 s, 75.70 s, 170.4 s.
4.5.1.3. 2-Cyclohexen-1-ol (R)-15.
To a solution of 2-cyclo-
4.3.6.3. (+)-2-Bromocyclopentanol (1R,2S)-8b.
Yield 40%,
hexenyl acetate (R)-13 (1.1 g, 8.0 mmol) in 1.5 ml of methanol
was added a solution of NaOH (1 M, 15 ml). The mixture was stir-
red overnight at room temperature. The mixture was then ex-
tracted with methylene chloride. The extract was evaporated and
the residue was distilled under vacuum. Yield 0.60 g (80%), color-
mp <0, ½a 2D0
¼ þ30:9 (c 1, CHCl3).
ꢂ
4.3.7. Resolution of trans-2-halogencycloalkanols 3a–c
We carried out the biocatalytic kinetic resolution of trans-2-
halogencyclohexanols with vinyl acetate in the presence of BCL.
The resolution of these compounds was performed by biocatalytic
hydrolysis of the acetates in the presence of Candida cylindracea li-
pase, Pseudomonas sp. lipase, and also by trans-esterification with
vinyl acetate catalyzed by Pseudomonas fluorescencia lipase 7,8. It
was necessary for us to compare the results of the resolution for
the cis- and trans-2-halogeno–hydrins under the same conditions.
The results can be seen in Table 2. The data in Table 2 clearly show
that the biocatalytic resolution of cis- and trans-2-halogenhydrins
follows Kazlauskas’ rule.
less oil, bp 96–97 °C (75 mmHg), ½a D20
ꢂ
¼ þ123:5 (c 2, CHCl3). 1H
NMR (500 MHz, CDCl3): d 2.11–1.39 (7H, m), 4.29–4.03 (1H, m,
CHOH), 5.97–5.58 (2H, m, CH@).24b
Acknowledgments
This work was financially supported by the State Foundation for
Basic Research of Ukraine and the Russian Foundation for Basic Re-
search (joint Project No. F40.3/034).
References
4.4. Determination of the enantiomeric purity of the
compounds
1. Eliel, E. L.; Wilen, S. H.; Mander, L. N. Stereochemistry of Organic Compounds;
Wiley: New York, 1994.
2. Sate, T.; Gotoh, Y.; Watanabe, M.; Fujisawa, T. Chem. Lett. 1983, 1533.
3. Hayes, R.; Wallace, T. W. Tetrahedron Lett. 1990, 31, 3355.
4. Sabol, J. S.; Cregge, R. J. Tetrahedron Lett. 1989, 30, 3377.
5. Hu, Q.-Y.; Rege, P. D.; Corey, E. J. J. Am. Chem. Soc. 2004, 126, 5984.
6. Kassai, C.; Fogassi, E.; Kozma, D. Synth. Commun. 2006, 1015.
7. (a) Furukawa, T.; Hashimoto, T. Tetrahedron: Asymmetry 1993, 4, 2323; (b)
Fukazawa, T.; Shimoji, Y.; Hashimoto, T. Tetrahedron: Asymmetry 1996, 7, 1649;
(c) Wolker, D.; Haufe, G. J. Org. Chem. 2002, 67, 3015.
8. Honig, H.; Seufer-Wasserthal, P. Synthesis 1990, 1137.
9. (a) Kotsuki, H.; Shimanouchi, N. Tetrahedron Lett. 1996, 37, 1845; (b) Bajwa, J.
S.; Anderson, R. C. Tetrahedron Lett. 1991, 32, 3021.
10. (a) Tidwell, T. T. Synthesis 1990, 857; (b) Eisenbraun, E. J. Org. Synth. 1965, 45,
28.
11. (a) Wigfield, D. C.; Phelps, D. J. J. Am. Chem. Soc. 1974, 96, 543; (b) Suzuki, Y.;
Kaneno, D.; Tomoda, Sh. J. Phys. Chem. A 2009, 112, 2578; (c) Carruthers, W.
Some Modern Methods of Organic Synthesis, 3rd ed.; Cambridge Univ. Pr.:
Cambridge, 1986. pp 436; (d) Yoshinaga, F.; Tormena, C. F.; Freitas, M. P.;
Rittner, R.; Abraham, R. J. J. Chem. Soc., Perkin Trans. 2 2002, 1494; (e) Freitas, M.
P.; Tormena, C. F.; Oliveira, P. R.; Rittner, R. J. Mol. Struct. (Theochem) 2002, 589–
590, 147; (f) Coelho, J. V.; Freitas, M. P. J. Mol. Struct. (Theochem) 2010, 941, 53;
(g) Rosenberg, R. E.; Abel, R. L.; Drake, M. D.; Fox, D. J.; Ignatz, A. K.; Kwiat, D.
M.; Schaal, K. M.; Virkler, P. R. J. Org. Chem. 2001, 66, 1694.
The enantiomeric excesses of the compounds were determined
by the formation of the Mosher esters of (S)-
luoromethylphenylacetyl chloride [(S)-MTPA-Cl] with haloge-
ncycloalkanols: to solution of an alcohol (0.1 mmol) and
a-methoxy-a-trif-
a
pyridine (0.2 mmol) in 0.5 ml of absolute THF was added a solution
of MTPA-Cl (26 mg, 0.11 mmol) in 0.5 ml of THF at ꢀ70 °C. The
temperature was increased to room temperature and the reaction
mixture was centrifuged. The centrifugate was analyzed by 19F
NMR and 1H NMR spectra. Two signals were discovered in racemic
alcohols at ꢀ71–72 ppm (19F) and 3.55–3.60 ppm (1H, MeO-group)
and only one signal was present in the kinetically resolved
alcohols.
4.5. Determination of the absolute configuration of 2-
halogencycloalkenols 7,8
The absolute configuration of the compounds was assigned by
chemical correlation with the known 2-cyclohexenyl acetates
and cyclopentenol as described below.
12. (a) Dale, J. A.; Mosher, H. S. J. Am. Chem. Soc. 1973, 95, 512; (b) Parker, D. Chem.
Rev. 1991, 91, 1441; (c) Ohtani, I.; Kusumi, T.; Kashman, Y.; Kakisawa, H. J. Am.
Chem. Soc. 1991, 113, 4092.
13. Kazlauskas, R. J.; Weissfloch, A. N. E.; Rappaport, A. T.; Cuccia, L. A. J. Org. Chem.
1991, 56, 2656.
14. Asami, M. Chem. Lett. 1984, 829.
4.5.1. Correlation of compounds 7,8 a–c with the 2-cycloalkenyl
acetates 13,14
15. Busato, S.; Tinembart, O.; Zhang, Z.; Scheffold, R. Tetrahedron 1990, 46, 3155.
16. Gupta, A. K.; Kazlauskas, R. J. Tetrahedron Asymmetry 1993, 4, 879.
17. Joshi, N. N.; Srebnik, M.; Brown, H. C. J. Am. Chem. Soc. 1988, 110, 6246.
18. Inagaki, T.; Fukuhara, T.; Hara, S. Synthesis 2003, 1157.
19. Cristol, S. J.; Radbmacher, L. E. J. Am. Chem. Soc. 1959, 81, 1600.
20. Delmond, B.; Pommier, J.-C.; Valade, J. J. Organomet. Chem. 1972, 35.
21. Basso, E. A.; Abiko, L. A.; Gauze, G. F.; Pontes, R. M. J. Org. Chem. 2011, 76, 145.
22. (a) Ohta, H.; Sakata, Y.; Takeuchi, T.; Ishii, Y. Chem. Lett. 1990, 733; (b) Billings,
S. B.; Woerpel, K. A. J. Org. Chem. 2006, 71, 5171; (c) Meshram, H. M.; Reddy, P.
N.; Vishnu, P.; Sadashiv, K.; Yadav, J. S. Tetrahedron Lett. 2006, 47, 991.
23. Szori, K.; Szöllosi, G.; Bartók, M. J. Catal. 2006, 244, 255.
4.5.1.1. 2-Cyclohexenyl acetate (R)-13.
A mixture of (+)-
(1R,2S)-2-iodo- or bromocyclohexyl acetate 9a,b (2 g) and DBU
(5 ml) was heated for 12 h at 70 °C, then the reaction mixture
was diluted with ether, filtered, and washed with dilute hydrochlo-
ric acid and an aqueous solution of sodium bicarbonate. The sol-
vent was evaporated under reduced pressure and the residue
was purified by column chromatography and bulb to bulb distilla-
tion to afford the 2-cyclohexenyl acetate (R)-13. Yield 45–50%, bp
24. (a) Asami, M. Bull. Chem. Soc. Jpn. 1990, 63, 721; (b) Trost, B. M.; Organ, M. G.;
O’Doherty, G. A. J. Am. Chem. Soc. 1995, 117, 9662.
60 °C (10 mmHg). ½a D20
ꢂ
¼ þ180 (c 3, CHCl3).7b 1H NMR (500 MHz,
CDCl3): d 2.02 (3H, s, CH3), 2.29–1.63 (6H, m, CH2), 5.73–5.67
(1H, m, OH), 5.99–5.92 (1H, m, CH@), 5.28–5.23 (1H, m, CH@).