Oxidation of Tetraarylethylene Donors
J. Am. Chem. Soc., Vol. 120, No. 28, 1998 6939
in the tetratolylethylene dication 22+, as indicated by the
structural parameters: d ) 1.502 Å, l ) 1.423 Å, φ ) 24.1°,
and q ) 59% in relation to those in either the tetraanisylethylene
the ethylenic donor. The linear changes in the structural
parameters (d, l, θ, φ, and q as described in Chart 3) coincide
with the incremental (linear) change in the energy requirement
for electron removal, as indicated by values of the reversible
oxidation potentials E°ox(Ia) = E°ox(II) in acetonitrile solution.
The coplanarity (φ) and quinoidal distortion (q) of the anisyl
substituents are especially useful measures of the delocalization
(and stabilization) of positive charge in order to reduce the
dication 12+ or the hybrid 32+ 37
.
The rather expanded dihedral angle θ ) 77° in tetratolyleth-
ylene dication 22+ relative to either tetraanisylethylene dication
1
2+ (θ ) 62°) or dianisylditolylethylene dication 32+ (θ ) 56°)
indicates that the delocalization of two positive charges (as in
11) is not a strong requirement for the attainment of a bisected
conformation in these dications. Although it may be tempting
to attribute the bisected conformation of tetraarylethylene dica-
tions to steric repulsion of the large aryl groups, it is noteworthy
that a variety of other ethylenic dications with different substi-
tuents all exist in twisted conformations with large dihedral (θ)
angles.38 Indeed, theoretical calculations of the simple (unen-
cumbered) ethylene dication predict a bisected structure with
structural parameters θ ) 90° and d ) 1.46 Å.39 Significant
twisting of the ethylenic bond also pertains to the ethylene cation
radical measured in the gas phase40 and confirmed by theoretical
calculations.41 Since the same elongation and twisting of the
ethylene bond have also been observed in the tetraphenylethyl-
ene dianion (d ) 1.49 Å, θ ) 56°),42 the progressive change
from a planar to a bisected conformation may simply reflect the
increasing trend for the minimization of Coulombic repulsion.43
values of E°ox and lead to increased disproportionation (Kdisp
)
in eq 1. Structural analysis also indicates that a single anisyl
substituent on an ethylenic carbon (as in various R,â-dianisyl-
ethylenes) is sufficient to confer an optimal cationic stabilization
of an ethylenic donor D in its oxidative conversion to cation
radical (D+•) and then to its dication (D2+).
Experimental Section
The olefinic and aromatic electron donors 1,1,2,2-tetrakis(4-meth-
oxyphenyl)ethylene (1),3c 1,1,2,2-tetrakis(4-methylphenyl)ethylene (2),1d
3,4-bis(4-methoxy-phenyl)-hex-3-ene (4),45 2,3-bis(4-methoxyphenyl)-
bicyclo-[2.2.2]oct-2-ene (5),46 4,4′-dimethoxybenzhydrylidene-adaman-
tane (6),1d octamethylbiphenylene (7),47 and tetrakis(bicyclo[2.2.2]-
octano)cyclooctatetraene (8)24 have been described previously. The
McMurry coupling of 4-methoxy-4′-methylbenzophenone with titanium
tetrachloride and zinc dust in tetrahydrofuran afforded 1,2-bis(4-
methylphenyl)-1,2-bis(4-methoxyphenyl)ethylene (3) in 91% yield. Bis-
(4-methoxyphenyl)-1-adamantylmethyl chloride (12) was prepared from
the reaction of Grignard reagent derived from p-bromoanisole and ethyl
1-adamantylcarboxylate to yield bis(4-methoxyphenyl)-1-adamantyl-
methyl alcohol which was in turn converted to bis(4-methoxyphenyl)-
1-adamantylmethyl chloride in excellent yield (92%), by treatment with
excess thionyl chloride. Procedures for the oxidation of tetraaryleth-
ylenes 1-3 and dianisylethylenes 4-6 to the corresponding cation-
Summary and Conclusions
The successful isolation of tetraanisylethylene (1), its cation
radical (1+•), and its dication (12+) as crystalline salts allows
X-ray diffraction analysis to establish the structural changes
upon the successive removal of one then two electrons from
(37) It is noteworthy that the structural parameters in 32+ confirm the
significant coplanarity (φ ) 18.2°) and quinoidal distortion (q ) 83%) of
the anisyl group, certainly by comparison with those of the tolyl group (φ
) 36.5° and q ) 39%). The other structural parameters for 32+ are d )
1.502 Å, θ ) 56.0°; for the anisyl groups, l ) 1.401 Å, d1 ) 1.437 Å, d2
) 1.363 Å, φ ) 18.2°, q ) 83%; and for the tolyl group, l ) 1.453 Å, d1
) 1.412 Å, d2 ) 1.377 Å, φ ) 36.5 deg, q ) 39%.
(38) (a) Bock, H.; Ruppert, K.; Merzweiler, K.; Fenske, D.; Goesmann,
H. Angew. Chem., Int. Ed., Engl. 1989, 20, 1684. (b) Elbl-Weiser, K.;
Krieger, C.; Staab, H. A. Angew. Chem., Int. Ed. Engl. 1990, 29, 211. (c)
Takanori, S.; Shiohara, H.; Monobe, M.; Sakimura, T.; Tanaka, S.;
Yamashita, Y.; Miyashi, T. Angew. Chem., Int. Ed. Engl. 1992, 31, 455.
(d) Bock, H.; Na¨ther, C.; Havlas, Z. J. Chem. Soc., Chem. Commun. 1995,
1111. See also: (e) Baenziger, N. C.; Buckles, R. E.; Simpson, T. D. J.
Am. Chem. Soc. 1967, 89, 3405.
radical (and dication) salts with aromatic cation-radical salts [EA+•
-
SbCl6-] (λmax ) 486 nm, log ꢀ486 ) 3.66 M-1 cm-1) and [MA+• SbCl6
]
(λmax ) 518 nm, log ꢀ518 ) 3.86 M-1 cm-1) in dichloromethane,
preparative oxidation of tetraarylethylenes with [Et3O+ SbCl6-] and
antimony pentachloride for the isolation and crystallization of dication
(and cation-radical) salts, oxidation of electron-rich donors 1, 7, and 8
with tetraanisylethylene dication salt [12+ (SbCl6-)2], measurements of
cation-radical disproportionation constant, and isolation and X-ray
crystallography of single crystals of various dication salts, cation-radical
and carbenium salts (discussed above), and neutral tetraarylethylenes
are described in detail in the Supporting Information Available.
Acknowledgment. We thank the National Science Founda-
(39) (a) Lammertsma, K.; Barzaghi, M.; Olah, G. A.; Pople, J. A.; Kos,
A. J.; Schleyer, P. v. R. J. Am. Chem. Soc. 1983, 105, 5252. (b)
Lammertsma, K.; Schleyer, P. v. R.; Schwarz, H. Angew. Chem., Int. Ed.
Engl. 1989, 28, 1321 and references therein.
(40) Merer, A. J.; Schoonveld, L. Can. J. Phys. 1969, 47, 1731. Koppel,
H.; Domcke, W.; Cederbaum, L. S.; von Niessen, W. J. Chem. Phys. 1978,
69, 4252. See also: Shiotani, M.; Nagata, Y.; Sohma, J. J. Am. Chem. Soc.
1984, 106, 4604. Fujisawa, J.; Sato, S.; Shimokoshi, K. Chem. Phys. Lett.
1986, 124, 391.
(41) (a) Lunell, S.; Eriksson, L. A.; Huang, M. B. J. Mol. Struct.
(THEOCHEM) 1991, 230, 263. (b) Dewar, M. J. S.; Thiel, W. J. Am. Chem.
Soc. 1977, 99, 4899. (c) Bellville, D. J.; Bauld, N. L. J. Am. Chem. Soc.
1982, 104, 294. (d) Alvarez-Idaboy, J. R.; Eriksson, L. A.; Fa¨ngstro¨m, T.;
Lunell, S. J. Phys. Chem. 1993, 97, 12737. For twisting in other cation
radicals see: (e) Clark, T.; Nelsen, S. F. J. Am. Chem. Soc. 1988, 110,
868. (f) Takahashi, O.; Kikuchi, O. J. Mol. Struct. (Theochem.) 1994, 313,
207. (g) Gerson, F.; Lopez, J.; Krebs, A.; Wolfgang, R. Angew. Chem.,
Int. Ed. Engl. 1981, 20, 95.
(42) (a) Bock, H.; Ruppert, K.; Fenske, D. Angew. Chem., Int. Ed. Engl.
1989, 28, 1685. Compare also: (b) Walczack, M.; Stucky, G. D. J.
Organomet. Chem. 1975, 97, 313. Sekiguchi, A.; Nakanishi, T.; Kabuto,
C.; Sakurai, H. J. Am. Chem. Soc. 1989, 111, 3748. For the progressive
structural changes in tetracyanoethylene, anion radical, and dianion with
various countercations, see: Bock, H.; Ruppert, K.; Na¨ther, C.; Havlas, Z.;
Hermann, H.-F.; Arad, C.; Go¨bal, I.; John, A.; Meuret, J.; Nick, S.;
Rauschenbach, A.; Seitz, W.; Vaupel, T.; Solokui, B. Angew. Chem., Int.
Ed. Engl. 1992, 31, 550 and references therein. Note also that theoretical
calculations on ethylene dianion predict θ ) 90° and d ) 1.40 Å. Kos, A.
J.; Jemmis, E. D.; Schleyer, P. v. R.; Gleiter, R.; Fishback, V.; Pople, J. A.
J. Am. Chem. Soc. 1981, 103, 4996.
tion and Robert A. Welch Foundation for financial support.
Supporting Information Available: Materials and instru-
mentation used, synthesis of 3 and 12, the detailed procedure
for the oxidation of donors 1-6 with MA+• (and/or EA+•) and
donors 1, 7, and 8 with the dication salt (12+), the measurement
of the disproportionation constants, preparative isolation and
crystallization of the dication and cation-radical salts, as well as
the X-ray crystal structure data for 1, [1+• SbCl6-], [12+ (SbCl6
)
-
(Sb2Cl7-)‚1.7CH2Cl2], [22+ (SbCl6-)2], [32+ (SbCl6-)2], 3, and
[12+ SbCl6-] (68 pages, print/PDF). See any current masthead
page for ordering information and Web access instructions.
JA981095W
(43) We note that the loss of π-electrons from the central CR-Câ bond
in various tetraarylethylene dications leads to an essentially single C-C
bond [for 12+ (d ) 1.503 Å), 22+ (d ) 1.502 Å), and 32+ (d ) 1.499 Å)].
As such, the energy requirements for the change from a planar to the bisected
conformation (for whatever other reasons) are expected to be rather small.44
The observed deviations in the values of θ from 90° in various tetraaryl-
ethylene dications may be a result of crystal packing forces.
(44) See, e.g.: Oki, M. Top. Stereochem. 1983, 14, 1.
(45) McMurry, J. E.; Fleming, M. P. J. Am. Chem. Soc. 1974, 96, 4708.
(46) Rathore, R.; Weigand, U.; Kochi, J. K. J. Org. Chem. 1996, 61,
5246.
(47) Hart, H.; Teuerstein, A.; Babin, M. A. J. Am. Chem. Soc. 1981,
103, 903.