Macromolecules, Vol. 37, No. 18, 2004
Helical Poly(phenylpropiolate)s 6703
product was purified on a silica gel column using chloroform
as the eluent. Recrystallization from ethanol/water mixture
(4:1 by volume) gave 5.6 g of white powdery product of 4 (yield
84.4%). IR (KBr), ν (cm-1): 2221 (vs, CtC), 1750 and 1720
P4: Yellow powdery solid; yield 6.2%. Mw: 96 400; Mw/Mn:
3.2 (GPC, Table 2, no. 8). IR (KBr), ν (cm-1): 1746 and 1717
1
(vs, CdO). H NMR (300 MHz, CDCl3), δ (ppm): 6.63 (Ar-H
ortho, para, and meta to CdC), 5.38 (dCH), 4.39 (OCH2), 2.29,
1.53, 1.11, 0.96, 0.86, 0.78, 0.69. 13C NMR (75 MHz, CDCl3), δ
(ppm): 164.2 (dCCO2), 154.2 (ArCd), 139.1 (dCCO2 and Cd
CH), 126.5 (aromatic carbons ortho, para, meta, and linked to
CdC), 122.8 (CdCH), 77.9 (OCH), 64.5, 56.8, 56.3, 50.1, 42.4,
39.7, 38.1, 36.6, 36.4, 36.0, 32.1, 28.1, 24.5, 24.2, 23.1, 23.0,
22.8, 22.7, 21.3, 19.5, 18.9, 12.1. UV (CHCl3, 1.6 × 10-4 mol/
1
(vs, CdO). H NMR (300 MHz, CDCl3), δ (ppm): 7.58 (m, 2H,
Ar-H ortho to CtC), 7.35 (m, 3H, Ar-H para and meta to
CtC), 5.39 (d, 1H, dCH), 4.41 (m, 4H, OCH2), 2.34 (t, 2H),
1.99-0.67 (m, 41H). 13C NMR (75 MHz, CDCl3), δ (ppm): 154.2
(≡CCO2), 153.6 (OCO2), 139.2 (CdCH), 133.0 (aromatic car-
bons ortho to CtC), 130.7 (aromatic carbon para to CtC),
128.5 (aromatic carbons meta to CtC), 123.0 (CdCH), 119.4
(aromatic carbon linked with CtC), 87.1 (ArC≡), 80.2 (≡CCO2),
78.3 (OCH), 64.7, 63.3, 56.6, 56.1, 49.9, 39.7, 39.5, 37.9, 36.8,
36.5, 36.1, 35.7, 31.84, 31.78, 28.2, 28.0, 27.6, 24.2, 23.8, 22.8,
22.5, 21.0, 19.2, 18.7, 11.8. MS (CI): m/e 603.6 [(M + 1)+, calcd
603.6].
P olym er iza tion Rea ction s. All the polymerization reac-
tions and manipulations were carried out under nitrogen using
Schlenk techniques in a vacuum line system or an inert-
atmosphere glovebox (Vacuum Atmospheres), except for the
purification of the polymers, which was done in an open
atmosphere. A typical experimental procedure for the polym-
erization of 1 is given below.
Into a baked 20 mL Schlenk tube with a stopcock in the
sidearm was added 322.0 mg (0.80 mmol) of 1. The tube was
evacuated under vacuum and then flushed with dry nitrogen
three times through the sidearm. Freshly distilled toluene (2
mL) was injected into the tube to dissolve the monomer. The
catalyst solution was prepared in another tube by dissolving
10.9 mg of molybdenum(V) chloride and 17.2 mg of tetra-
phenyltin in 2 mL of toluene. The catalyst solution was aged
at 60 °C for 15 min, into which the monomer solution was
added using a hypodermic syringe. The reaction mixture was
stirred at 60 °C under nitrogen for 24 h. The solution was then
cooled to room temperature, diluted with 5 mL of chloroform,
and added dropwise to 500 mL of acetone through a cotton
filter under stirring. The precipitate was allowed to stand
overnight, which was then filtered with a Gooch crucible.
Polymer P1 was washed with acetone and dried in a vacuum
oven to a constant weight.
L), λmax: 315 nm; ꢀmax: 0.46 × 104 mol-1 L cm-1
.
Ack n ow led gm en t. The work described in this paper
was partially supported by the Research Grants Council
(603304, N_HKUSR606_03, 604903, HKUST6085/02P,
6121/01P, and 6187/99P) and the University Grants
Committee of Hong Kong through an Area of Excellence
(AoE) Scheme (AoE/P-10/01-1A).
Refer en ces a n d Notes
(1) Nobel Lectures: (a) Shirakawa, H. Angew. Chem., Int. Ed.
2001, 40, 2575-2580. (b) MacDiarmid, A. G. Angew. Chem.,
Int. Ed. 2001, 40, 2581-2590. (c) Heeger, A. J . Angew. Chem.,
Int. Ed. 2001, 40, 2591-2611.
(2) For reviews, see: (a) Yashima, E.; Maeda, K.; Nishimura, T.
Chem.sEur. J . 2004, 10, 43-51. (b) Sedlacek, J .; Vohlidal,
J . Collect. Czech. Chem. Commun. 2003, 68, 1745-1790. (c)
Choi, S. K.; Gal, Y. S.; J in, S. H.; Kim, H. K. Chem. Rev. 2000,
100, 1645-1681. (d) Ginsburg, E. J .; Gorman, C. B.; Grubbs,
R. H. In Modern Acetylene Chemistry; Stang, P. J ., Diederich,
F., Eds.; VCH: Weinheim, 1995; Chapter 10. (e) Saunders,
R. S.; Cohen, R. E.; Schrock, R. R. Acta Polym. 1994, 45, 301-
307. (f) Masuda, T.; Higashimura, T. Adv. Polym. Sci. 1987,
81, 121-165.
(3) For reviews, see: (a) Lam, J . W. Y.; Tang, B. Z. J . Polym.
Sci., Part A: Polym. Chem. 2003, 41, 2607-2629. (b) Lam,
J . W. Y.; Chen, J .; Law, C. C. W.; Peng, H.; Xie, Z.; Cheuk,
K. K. L.; Kwok, H. S.; Tang, B. Z. Macromol. Symp. 2003,
196, 289-300. (c) Xie, Z.; Peng, H.; Lam, J . W. Y.; Chen, J .;
Zheng, Y.; Qiu, C.; Kwok, H. S.; Tang, B. Z. Macromol. Symp.
2003, 195, 179-184.
(4) For reviews, see: (a) Aoki, T. Prog. Polym. Sci. 1999, 24, 951-
993. (b) Tang, B. Z. Polym. News 2001, 26, 262-272. (c)
Nakano, T.; Okamoto, Y. Chem. Rev. 2001, 101, 4013-4038.
(d) Cheuk, K. K. L.; Li, B. S.; Tang, B. Z. Curr. Trends Polym.
Sci. 2002, 7, 41-55. (e) Maeda, K.; Yashima, E. J . Synth.
Org. Chem. J pn. 2002, 60, 878-890. (f) Cheuk, K. K. L.; Li,
B. S.; Tang, B. Z. In Encyclopedia of Nanoscience and
Nanotechnology; Nalwa, H. S., Ed.; American Scientific
Publishers: Stevenson Ranch, CA, 2004; Vol. 8, pp 703-713.
(5) (a) Deng, J . P.; Tabei, J .; Shiotsuki, M.; Sanda, F.; Masuda,
T. Macromolecules 2004, 37, 1891-1896. (b) Percec, V.;
Obata, M.; Rudick, J . G.; De, B. B.; Glodde, M.; Bera, T. K.;
Magonov, S. N.; Balagurusamy, V. S. K.; Heiney, P. A. J .
Polym. Sci., Part A: Polym. Chem. 2002, 40, 3509-3533. (c)
Tabata, M.; Mawatari, Y.; Sone, T.; Yonemoto, D.; Miyasaka,
A.; Fukushima, T.; Sadahiro, Y. Kobunshi Ronbunshu 2002,
59, 168-177. (d) Schenning, A. P. H. J .; Fransen, M.; Meijer,
E. W. Macromol. Rapid Commun. 2002, 23, 266-270. (f)
Mitsuyama, M.; Kondo, K. J . Polym. Sci., Part A: Polym.
Chem. 2001, 39, 913-917. (g) Cametti, C.; Codastefano, P.;
D’Amato, R.; Furlani, A.; Russo, M. V. Synth. Met. 2000, 114,
173-179. (h) Yashima, E.; Maeda, K.; Okamoto, Y. Nature
(London) 1999, 399, 449-451. (i) Akagi, K.; Piao, G.; Kaneko,
S.; Sakamaki, K.; Shirakawa, H.; Kyotani, M. Science 1998,
282, 1683-1686. (j) Moore, J . S.; Gorman, C. B.; Grubbs, R.
H. J . Am. Chem. Soc. 1991, 113, 1704-1712. (k) Ciardelli,
F.; Lanzillo, O.; Pieroni, O. Macromolecules 1974, 7, 174-179.
(6) (a) Tang, B. Z.; Kotera, N. Macromolecules 1989, 22, 4388-
4390. (b) Li, B.; Cheuk, K. K. L.; Salhi, F.; Lam, J . W. Y.;
Cha, J . A. K.; Xiao, X.; Bai, C.; Tang, B. Z. Nano Lett. 2001,
1, 323-328. (c) Salhi, F.; Cheuk, K. K. L.; Sun, Q.; Lam, J .
W. Y.; Cha, J . A. K.; Li, G.; Li, B.; Luo, J .; Chen, J .; Tang, B.
Z. J . Nanosci. Nanotechnol. 2001, 1, 137-141. (d) Cheuk, K.
K. L.; Lam, J . W. Y.; Lai, L. M.; Dong, Y.; Tang, B. Z.
Macromolecules 2003, 36, 9752-9762. (e) Cheuk, K. K. L.;
Lam, J . W. Y.; Chen, J .; Lai, L. M.; Tang, B. Z. Macromol-
ecules 2003, 36, 5947-5959. (f) Li, B.; Cheuk, K. K. L.; Yang,
D.; Lam, J . W. Y.; Wan, L.; Bai, C.; Tang, B. Z. Macromol-
Ch a r a cter iza tion Da ta . P1: Yellow powdery solid; yield
57.6%. Mw: 74 200; Mw/Mn: 2.7 (GPC, Table 1, no. 4). IR (KBr),
ν (cm-1): 1734 and 1716 (vs, CdO). 1H NMR (300 MHz,
CDCl3), δ (ppm): 7.63 [Ar-H meta to OCH3 and meta and
ortho to CH(CH3)], 7.15 (Ar-H ortho to OCH3), 6.76 (Ar-H
ortho, para, and ortho to CdC), 4.12 (OCH2), 3.93 (OCH3), 3.41
[CH(CH3)], 1.37 [CH(CH3)]. 13C NMR (75 MHz, CDCl3), δ
(ppm): 174.5 [CO2CH(CH3)], 165.5 (dCCO2), 157.3 (aromatic
carbon linked with OCH3), 150.8 (ArCd), 140.4 (dCCO2),
135.6, 135.0, 133.5, 129.1, 128.6, 126.9, 126.2, 125.9, 118.8,
105.5, 63.3 (OCH2), 55.2 (OCH3), 44.8 [CH(CH3)], 18.8
[CH(CH3)]. UV (CHCl3, 2.98 × 10-4 mol/L), λmax
: 332 nm;
ꢀmax: 0.55 × 104 mol-1 L cm-1
.
P2: Yellow powdery solid; yield 17.8%. Mw: 60 900; Mw/
Mn: 2.0 (GPC, Table 2, no. 3). IR (KBr), ν (cm-1): 1763 and
1714 (vs, CdO). 1H NMR (300 MHz, CDCl3), δ (ppm): 6.54
(Ar-H ortho, para, and meta to CdC), 4.15 (OCH2), 3.80
(OCOCH2O), 3.10 (OCH), 2.28, 1.94, 1.64, 1.28, 0.83. 13C NMR
(75 MHz, CDCl3), δ (ppm): 170.3 (OCOCH2O), 165.3 (dCCO2),
133.6 (aromatic carbons ortho to CdC), 131.0 (aromatic carbon
para to CdC), 125.0 (aromatic carbons meta to and linked with
CdC), 79.8 (OCOCH2O), 65.7 (OCH), 63.1 (CH2OCOCH2 and
dCCO2CH2), 47.8, 39.8, 34.3, 31.4, 25.4, 23.3, 22.1, 20.7, 16.5.
UV (CHCl3, 2.9 × 10-4 mol/L), λmax: 320 nm; ꢀmax: 0.43 × 104
mol-1 L cm-1
.
P3: Yellow powdery solid; yield 34.3%. Mw: 15 400; Mw/
Mn: 1.5 (GPC, Table 2, no. 6). IR (KBr), ν (cm-1): 1746 and
1714 (vs, CdO). 1H NMR (300 MHz, CDCl3), δ (ppm): 7.21
(Ar-H), 6.62-6.47 (Ar-H ortho, para, and meta to CdC), 5.68
(CH), 4.12 (OCH2), 2.10 (CH3). 13C NMR (75 MHz, CDCl3), δ
(ppm): 169.8 (CH2OCO), 168.6 (OCOCH3), 165.6 (dCCO2),
150.6 (ArC)), 140.2 ()CCO2), 135.4, 133.2, 129.1, 128.7, 127.7,
126.8, 125.8, 74.3 (CH), 63.5 (CH2OCO), 62.2 (dCCO2CH2),
20.6 (CH3). UV (CHCl3, 2.4 × 10-4 mol/L), λmax: 325 nm; ꢀmax
:
0.30 × 104 mol-1 L cm-1
.