Organic Letters
Letter
́
(12) (a) Pardo, L. M.; Prendergast, A. M.; Nolan, M.-T.; O
Muimhneachain, E.; McGlacken, G. P. Eur. J. Org. Chem. 2015, 2015,
In conclusion, a double C−H activation protocol applied to 2-
coumarins and 2-pyrones gives quick access to the cyclized
products. This is certainly one of the most delicate molecular
frameworks to have been reported for this type of trans-
formation. Substitution patterns (on the phenoxy), which would
be difficult to access via other routes, are available with this
methodology. This approach facilitated a short, three-step
synthesis to flemichapparin C. Deuterium isotope effects were
examined, and a preliminary mechanism has been suggested
based on these studies.
́
3540−3550. (b) Nolan, M.-T.; Bray, J. T. W.; Eccles, K.; Cheung, M. S.;
Lin, Z.; Lawrence, S. E.; Whitwood, A. C.; Fairlamb, I. J. S.; McGlacken,
G. P. Tetrahedron 2014, 70, 7120−7127.
(13) (a) Laschober, R.; Kappe, T. Synthesis 1990, 1990, 387−388.
(b) Jin, Y. L.; Kim, S.; Kim, Y. S.; Kim, S.-A.; Kim, H. S. Tetrahedron Lett.
2008, 49, 6835−6837.
́
(14) Liegault, B.; Lee, D.; Huestis, M. P.; Stuart, D. R.; Fagnou, K. J.
Org. Chem. 2008, 73, 5022−5028.
(15) Li, H.; Zhu, R.-Y.; Shi, W.-J.; He, K.-H.; Shi, Z.-J. Org. Lett. 2012,
14, 4850−4853.
(16) Difficulties with the purification prevented complete isolation of
the minor regioisomer in the reactions of 8, 33, and 34. The structure is
assigned based on the data available for the minor regioisomer
contaminated with some of the major isomer.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
S
(17) Sun, C. L.; Furstner, A. Angew. Chem., Int. Ed. 2013, 52, 13071−
̈
13075.
General experimental procedures, characterization data,
and copies of 1H and 13C NMR spectra of all key
(18) We were able to achieve complete regioselectivity in favor of
flemichapparin C with 77% isolated yield when the conditions described
in Table 1, entry 3, at 120 °C were employed. However, we found this
result was highly dependent upon the quality of the TFA employed in
the reaction.
(19) (a) Zhao, J.; Zhang, Q.; Liu, L.; He, Y.; Li, J.; Li, J.; Zhu, Q. Org.
Lett. 2012, 14, 5362−5365. (b) Tang, D.-T. D.; Collins, K. D.; Ernst, J.
B.; Glorius, F. Angew. Chem., Int. Ed. 2014, 53, 1809−1813.
(20) Alternatively, performing the reaction with 1 in PivOD showed
deuterium incorporation exclusively at C-3, confirming a reversible C−
H activation event (see SI).
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
(21) Fagnou proposed a reversible palladation−proto(deuterio)
depalladation step for the intramolecular coupling of arenes and
ACKNOWLEDGMENTS
■
́
alkanes: Liegault, B.; Fagnou, K. Organometallics 2008, 27, 4841−4843.
The research was supported by Science Foundation Ireland
(SFI/12/IP/1315, SFI/12/RC/2275, and 14/ADV/RC2751)
and the Irish Research Council/Pfizer.
Also, C-3−H has been shown to be labile in similar systems: Burns, M. J.;
Thatcher, R. J.; Taylor, R. J. K.; Fairlamb, I. J. S. F. Dalton Trans. 2010,
39, 10391−10400.
(22) For two examples of a proposed SEAr, see: (a) Tunge, J. A.;
Foresee, L. N. Organometallics 2005, 24, 6440−6444. (b) Shi, S.-L.;
REFERENCES
■
Buchwald, S. L. Angew. Chem., Int. Ed. 2015, 54, 1646−1650.
A
(1) Hassan, J.; Sev
Rev. 2002, 102, 1359−1470.
́
ignon, M.; Gozzi, C.; Schulz, E.; Lemaire, M. Chem.
concerted metalation deprotonation (CMD)/ambiphilic metal ligand
activation (AMLA)-type mechanism should lead to a large positive KIE,
which we have yet to determine. For CMD, see: (c) Lapointe, D.;
Fagnou, K. Chem. Lett. 2010, 39, 1118−1126. (d) Campeau, L.-C.;
Parisien, M.; Jean, A.; Fagnou, K. J. Am. Chem. Soc. 2006, 128, 581−590.
For AMLA, see: (e) García-Cuadrado, D.; de Mendoza, P.; Braga, A. A.;
Maseras, F.; Echavarren, A. M. J. Am. Chem. Soc. 2007, 129, 6880−6886.
(f) García-Cuadrado, D.; Braga, A. A. C.; Maseras, F.; Echavarren, A. M.
J. Am. Chem. Soc. 2006, 128, 1066−1067.
(2) Horton, D. A.; Bourne, G. T.; Smythe, M. L. Chem. Rev. 2003, 103,
893−930.
(3) (a) McGlacken, G. P.; Bateman, L. M. Chem. Soc. Rev. 2009, 38,
2447−2464. (b) Ackermann, L.; Vicente, R.; Kapdi, A. R. Angew. Chem.,
Int. Ed. 2009, 48, 9792−9826.
(4) (a) Li, C.-J. Acc. Chem. Res. 2009, 42, 335−344. (b) Liu, C.; Yuan,
J.; Gao, M.; Tang, S.; Li, W.; Shi, R.; Lei, A. Chem. Rev. 2015, 115,
12138−12204.
(23) Based on the mechanistic studies carried out to date, we cannot be
certain which C−H bond is activated first. An initial, irreversible C−H
activation of the phenoxy group followed by reversible C−H activation
of the coumarin C-3−H could give similar results. We thank one
reviewer for this point.
(5) Constable, D. J.; Dunn, P. J.; Hayler, J. D.; Humphrey, G. R.;
Leazer, J. L., Jr; Linderman, R. J.; Lorenz, K.; Manley, J.; Pearlman, B. A.;
Wells, A. Green Chem. 2007, 9, 411−420.
(6) McGlacken, G. P.; Fairlamb, I. J. Nat. Prod. Rep. 2005, 22, 369−
385.
(7) (a) Dickinson, J. Nat. Prod. Rep. 1993, 10, 71−98. (b) Fairlamb, I. J.
S.; Marrison, L. R.; Dickinson, J. M.; Lu, F.-J.; Schmidt, J. P. Bioorg. Med.
Chem. 2004, 12, 4285−4299.
(8) Chia, M.; Haider, M. A.; Pollock, G., III; Kraus, G. A.; Neurock, M.;
Dumesic, J. A. J. Am. Chem. Soc. 2013, 135, 5699−5708.
(9) Murray, R. D. H. Nat. Prod. Rep. 1989, 6, 591−624.
(10) (a) Tuskaev, V. Pharm. Chem. J. 2013, 47, 1−11. (b) Xu, M.-Y.;
Kim, Y. S. Food Chem. Toxicol. 2014, 74, 311−319. (c) Kowalski, K.;
Szczupak, Ł.; Oehninger, L.; Ott, I.; Hikisz, P.; Koceva-Chyła, A.;
Therrien, B. J. Organomet. Chem. 2014, 772−773, 49−59. (d) Nehybova,
T.; Smarda, J.; Daniel, L.; Brezovsky, J.; Benes, P. J. Steroid Biochem. Mol.
Biol. 2015, 152, 76−83.
(11) (a) Liu, J.; Liu, Y.; Du, W.; Dong, Y.; Liu, J.; Wang, M. J. Org.
Chem. 2013, 78, 7293−7297. (b) Ghosh, R.; Stridfeldt, E.; Olofsson, B.
Chem. - Eur. J. 2014, 20, 8888−8892. (c) Nolan, M.-T.; Pardo, L. M.;
Prendergast, A. M.; McGlacken, G. P. J. Org. Chem. 2015, 80, 10904−
10913.
D
Org. Lett. XXXX, XXX, XXX−XXX