E. Guimet et al. / Tetrahedron: Asymmetry 15 (2004) 2247–2251
2251
3J2–3 ¼ 3:6 Hz), 5.93 (d, 1H, H-1, 3J1–2 ¼ 3:6 Hz), 7.2–7.5
Acknowledgements
(m, 20H, Ph). 13C NMR (CDCl3), d: 26.6 (CH3), 27.1
2
ꢀ
We thank the Spanish Ministerio de Educacion, Cultura
yDeporte for their financial support (BQU2001-0656).
(CH3), 67.3 (d, C-5, J5-P ¼ 18:3 Hz), 80.4 (t, C-4,
3J4-P ¼ 6:8 Hz,
3J4-P ¼ 6:8 Hz),
82.1
(d,
C-3,
2J3-P ¼ 19:0 Hz), 83.9 (d, C-2,3J2-P ¼ 6:0 Hz), 105.3 (C-
1), 112.3 (CMe2), 128–132 (Ph).
References and notes
4.2.2.
isopropylidene-a-
3,5-Dideoxy-3,5-bis(diphenylphosphinite)-1,2-O-
-ribofuranose 2. Treatment of
1. See, for example: (a) Noyori, R. Asymmetric Catalysis in
Organic Synthesis; Wiley: New York, 1994; (b) Ojima, I.
Catalytic Asymmetric Synthesis; Wiley: New York, 2000;
(c) Jacobsen, E. N.; Pfaltz, A.; Yamamoto, H. Compre-
hensive Asymmetric Catalysis; Springer: Berlin, 1999.
2. Tang, W.; Zhang, X. Chem. Rev. 2003, 103, 3029.
3. (a) Jackson, R.; Thompson, D. J. J. Organomet. Chem.
1978, 159, C29; (b) Selke, R.; Pracejus, H. J. Mol. Catal.
1986, 37, 213; (c) Selke, R.; Schwarze, M.; Baudisch, H.;
Grassert, I.; Michalik, M.; Oehme, G.; Stoll, N.; Costi-
sella, B. J. Mol. Catal. 1993, 84, 223; (d) RajanBabu, T.
V.; Ayers, T. A.; Casalnuovo, A. L. J. Am. Chem. Soc.
1994, 116, 4101; (e) RajanBabu, T. V.; Ayers, T. A.;
Halliday, G. A.; You, K. K.; Calabrese, J. C. J. Org.
Chem. 1997, 62, 6012; (f) Ayers, T. A.; RajanBabu, T. V.
US Patent 5,510,507, 1996; (g) Yonehara, K.; Hashizume,
T.; Ohe, K.; Uemura, S. Bull. Chem. Soc. Jpn. 1998, 71,
1967; (h) Yonehara, K.; Ohe, K.; Uemura, S. J. Org.
Chem. 1999, 64, 9381; (i) Yonehara, K.; Hashizume, T.;
Mori, K.; Ohe, K.; Uemura, S. J. Org. Chem. 1999, 64,
5593; (j) Shin, S.; RajanBabu, T. V. Org. Lett. 1999, 1,
1229; (k) Chen, Y.; Li, X.; Tong, S.; Choi, M. C. K.;
Chan, A. S. C. Tetrahedron Lett. 1999, 40, 957.
D
4
(0.05 mmol) with chlorodiphenylphosphine (25 lL,
0.11 mmol) as described for compound 1 afforded
diphosphinite 2, which was purified byflash chroma-
tography(eluent: toluene/NEt 3 100/1, Rf 0.7) to produce
0.019 g (68%) of a pale yellow oil. Anal. Calcd for
C3220H32O5P2: C, 68.81; H, 5.77. Found: C, 68.83; H, 5.76.
½aꢀ ¼ þ60 (c, 2.0, CHCl3) 31P{1H} NMR (CDCl3), d:
D
118.39 (s, P–C3), 118.42 (s, P–C5). 1H NMR (CDCl3), d:
1.30 (s, 3H, CH3), 1.53 (s, 3H, CH3), 4.14 (m, 1H, H-5),
3.98 (m, 1H, H-50), 4.23 (m, 1H, H-3), 4.26 (m, 1H, H-4),
3
3
4.52 (t, 1H, H-2, J2-P ¼ 3:6 Hz, J2–1 ¼ 3:6 Hz), 5.42 (d,
1H, H-1, J1–2 ¼ 3:6 Hz), 7.2–7.8 (m, 20H, Ph). 13C
3
NMR (CDCl3), d: 26.5 (CH3), 26.6 (CH3), 67.6 (d, C-5,
2J5-P ¼ 19:1 Hz), 76.9 (d, C-3, J3-P ¼ 19:0 Hz), 78.1 (d,
2
3
3
C-2, J2-P ¼ 3:1 Hz), 78.9 (t, C-4, J4-P ¼ 6:8 Hz,
3J4-P ¼ 6:8 Hz), 103.6 (C-1), 112.8 (CMe2), 127–132 (Ph).
4.3. Synthesis of rhodium and iridium complexes
4. (a) Yamashita, M.; Hiramatsu, K.; Yamada, M.; Suzuki,
N.; Inokawa, S. Bull. Chem. Soc. Jpn. 1982, 55, 2917; (b)
Yamashita, M.; Naoi, M.; Imoto, H.; Oshikawa, T. Bull.
Chem. Soc. Jpn. 1989, 62, 942; (c) Yamashita, M.;
Kobayashi, M.; Sigiura, M.; Tsunekawa, K.; Oshikawa,
T.; Inokawa, S.; Yamamoto, H. Bull. Chem. Soc. Jpn.
1986, 59, 175.
4.3.1. General procedure. Diphosphinite ligand
(0.11 mmol) was added to a solution of [M(cod)2]BF4
(0.1 mmol M ¼ Rh, Ir) in 2 mL of dichloromethane.
After stirring for 30 min, the desired products were ob-
1
tained and characterized in solution. H and 13C NMR
details are reported in Table 1.
ꢁ
5. (a) Pamies, O.; Net, G.; Ruiz, A.; Claver, C. Eur. J. Inorg.
Chem. 2000, 2011; (b) Dieguez, M.; Pamies, O.; Ruiz, A.;
ꢀ
ꢁ
• [Rh(cod)(1)]BF4 5. 31P NMR (CD2Cl2), d: 128.37 (dd,
ꢀ
Castillon, S.; Claver, C. Tetrahedron: Asymmetry 2000, 11,
4701.
2
1JP–Rh ¼ 172:4 Hz, JP–P ¼ 25:9 Hz, P–C5), 132.09
1
2
(dd, JP–Rh ¼ 175:3 Hz, JP–P ¼ 25:9 Hz, P-C3).
ꢁ
ꢀ
6. (a) Pamies, O.; Dieguez, M.; Net, G.; Ruiz, A.; Claver, C.
ꢁ
• [Rh(cod)(2)]BF4 6. 31P NMR (CD2Cl2), d: 126.56 (dd,
ꢀ
Chem. Commun. 2000, 2383; (b) Pamies, O.; Dieguez, M.;
Net, G.; Ruiz, A.; Claver, C. J. Org. Chem. 2001, 66, 8364.
1JP–Rh ¼ 177:7 Hz, JP–P ¼ 20:2 Hz, P–C3), 127.66
2
1
2
ꢀ
7. (a) Dieguez, M.; Ruiz, A.; Claver, C. J. Org. Chem. 2002,
67, 3796; (b) Dieguez, M.; Ruiz, A.; Claver, C. Dalton
(dd, JP–Rh ¼ 177:7 Hz, JP–P ¼ 20:2 Hz, P–C5).
• [Ir(cod)(1)]BF4 7. 31P NMR (CD2Cl2), d: 110.72 (d,
ꢀ
2JP–P ¼ 27:4 Hz, P–C3), 113.98 (d, JP–P ¼ 27:4 Hz,
2
Trans. 2003, 2957.
8. (a) Penne, J. S. In Chiral Auxiliaries and Ligands in
Asymmetric Synthesis; John Wileyand Sons: New York,
1995; (b) Hanessian, S. In Total Synthesis of Natural
Products: The ‘‘Chiron’’ Approach; Pergamon: London,
1983; Vol. 3.
P–C5).
• [Ir(cod)(1)]BF4 8. 31P NMR (CD2Cl2), d: 117.70 (d,
2JP–P ¼ 13:3 Hz, P–C5), 118.34 (d, JP–P ¼ 13:3 Hz,
2
P–C3).
9. (a) Kartha, K. P. R. Tetrahedron Lett. 1986, 27, 3415; (b)
Vogel, A. I. In Vogel’s Textbook of Practical Organic
Chemistry, 5th ed.; Longman: New York, 1994.
10. (a) Levene, P. A.; Raymond, A. L. J. Biol. Chem. 1933,
102, 317; (b) Hollenberg, D. H.; Klein, D. H.; Fox, J. J.
Carbohydr. Res. 1978, 67, 491; (c) Ritzmann, G.; Klein, R.
S.; Hollenberg, D. H.; Fox, J. J. Carbohydr. Res. 1975, 39,
227; (d) Tsutsumi, H.; Kawai, Y.; Ishido, Y. Carbohydr.
Res. 1979, 73, 293.
4.4. Asymmetric hydrogenation reactions
In a typical experiment, a Schlenk tube was filled with a
dichloromethane solution (6 mL) of substrate (1 mmol),
[M(cod)2]BF4 (4.95 mg, 0.01 mmol) and ligand
(0.011 mmol). This was then purged three times with H2
and vacuum. The reaction mixture was then shaken
under H2 (1 bar) at room temperature. To remove the
catalyst, the solution was placed on a short silica gel
column and eluted with CH2Cl2. Conversion and
enantiomeric excesses were determined bygas chroma-
tography.
ꢁ
ꢀ
11. (a) Pamies, O.; Dieguez, M.; Net, G.; Ruiz, A.; Claver, C.
Organometallics 2000, 19, 1488; (b) Dieguez, M.; Pamies,
ꢀ
ꢁ
O.; Ruiz, A.; Claver J. Organomet. Chem. 2001, 629, 77.
ꢀ
12. Cativiela, C.; Fernandez, J.; Mayoral, J. A.; Melendez, E.;
Uson, R.; Oro, L. A.; Fernandez, M. J. J. Mol. Catal.
ꢀ
ꢀ
1992, 16, 19.