Y. M. Osornio et al. / Tetrahedron Letters 45 (2004) 2855–2858
2857
Acknowledgements
X
R
R
i
N
N
We thank DGAPA (PAPIIT-IN205901) for generous
ꢀ
n
n
O
O
~
finantial support. Also we thank R. Patino, J. Perez, L.
Velasco, H. Rios, N. Zavala, E. Huerta and A. Pena, for
14a n=2, R=CH3, X=Br
14b n=1, R=H, X=Br
14c n=2, R=H, X=I
14d n=3, R=H, X=I
14e n=2, R=CH3, X=I
15a n=2, R=CH3 41% (59%)
15b n=1, R=H, 28% (41%)
15c n=2, R=H, 36% (73%)
~
technical support.
15d n=3, R=H,
0%
15e n=2, R=CH3, 0%
References and notes
ii
R
R
1. Bowman, W. R.; Bridge, C. F.; Brookes, P. J. Chem. Soc.,
Perkin Trans. 1 2000, 1–14.
+
N
N
n
n
2. (a) Studer, A. In Radicals in Organic Synthesis; Renaud,
P., Sibi, M., Eds.; Wiley VCH: Weinheim, 2001; Vol. 2, pp
62–76; (b) Murphy, J. A.; Sherburn, M. S. Tetrahedron
1991, 47, 4077; (c) Suzuki, F.; Kuroda, K. J. Heterocycl.
Chem. 1993, 30, 811; (d) Antonio, Y.; de la Cruz, E.;
Galezzi, E.; Guzman, A.; Bray, B. L.; Greenhouse, R.;
Kurz, L. J.; Lustig, D. A.; Maddox, M. L.; Muchowski, J.
M. Can. J. Chem. 1994, 72, 15; (e) Tim, C. T.; Jones, K.;
Wilkinson, J. Tetrahedron Lett. 1995, 36, 6743; (f) Osaki,
S.; Mitoh, H.; Ohmori, H. Chem. Pharm. Bull. 1996, 44,
2020; (g) Dobbs, P. A.; Jones, K.; Veal, K. T. Tetrahedron
1997, 53, 8287; (h) Aldabbagh, F.; Bowman, W. R.;
Mann, E. Tetrahedron Lett. 1997, 38, 7937; (i) Hagan, D.
O
O
16b n=1, R=H,
16c n=2, R=H, 77%
16d n=3, R=H, 51%
16e n=2, R=CH3, 0%
88%
17b n=1, R=H,
17c n=2, R=H,
17d n=3, R=H,
7%
16%
38%
17e n=2, R=CH3, 46%
Scheme 4. Reagents and conditions: (i) FeSO4Æ7H2O, H2O2, DMSO,
)))); (ii) nBu3SnH (1.2 equiv), AIBN (0.4 equiv), benzene, reflux.
When compounds 14b–d were subjected to standard
n-Bu3SnH/AIBN reaction conditions, the reductive
cyclization products 16b–d were obtained in good yields
with even the seven-membered compound 16d being
formed quite efficiently (Scheme 4).11 Significant
amounts of the reductively dehalogenated compounds
17b–d were formed in each case, the amount thereof
increasing in parallel with the increasing ring size of the
cyclization products 16b–d. These reactions were all ef-
fected using catalytic AIBN; even large concentrations
of this reagent did not divert the reactions away from
the observed reductive cyclization products. Finally,
both of the secondary halides 14a and 14e failed to give
reductive cyclization products. Only the reductive
dehalogenation product 17e was obtained from 14e,
while 14a underwent cyclization to the isoquinolinium
salt 18, the structure of which was established by X-ray
crystallography (Fig. 1, Br omitted for simplification
purposes). Interestingly, 14a did undergo cyclization
under Fenton-type conditions, presumably at least in
part, because of the lower reaction temperature.
ꢀ
J.; Gimenez-Arnau, E.; Schwalbe, C. H.; Stevens, M. F. G.
J. Chem. Soc., Perkin Trans. 1 1997, 2739; (j) Moody, C.
J.; Norton, C. L. J. Chem. Soc., Perkin Trans. 1 1997,
2639; (k) Rosa, A. M.; Lobo, A. M.; Branco, P. S.;
Prabhakar, S.; Pereira, A. M. D. L. Tetrahedron 1997, 53,
269; (l) Harrowen, D.; Nunn, M. I. T. Tetrahedron Lett.
1998, 39, 5875; (m) Aldabbagh, F.; Bowman, W. R.;
Mann, E.; Slawin, A. M. Z. Tetrahedron 1999, 55, 8111;
(n) Nadin, A.; Harrison, T. Tetrahedron Lett. 1999, 4073;
ꢀ
ꢀ
(o) Marco-Contelles, J.; Rodrıguez-Fernandez, M. Tetra-
hedron Lett. 2000, 41, 381; (p) Bowmann, W. R.; Mann, E.
J. Chem. Soc., Perkin Trans. 1 2000, 2991; (q) Allin, S. M.;
Barton, W. R. S.; Bowman, W. R.; McInally, T. Tetra-
hedron Lett. 2002, 43, 4191.
3. (a) Gagosz, F.; Zard, S. Z. Org. Lett. 2002, 4, 4345; (b)
Axon, J.; Boiteau, L.; Boivin, J.; Forbes, J. E.; Zard, S. Z.
Tetrahedron Lett. 1994, 35, 1719; (c) Liard, A.; Quiclet-
Sire, B.; Saicic, R. N.; Zard, S. Z. Tetrahedron Lett. 1997,
38, 1759; (d) Cholleton, N.; Zard, S. Z. Tetrahedron Lett.
1998, 39, 7295; (e) Ly, T. M.; Quiclet-Sire, B.; Sortais, B.;
Zard, S. Z. Tetrahedron Lett. 1999, 40, 2533.
4. (a) Mohan, R.; Kates, S. A.; Dombroski, M. A.; Snider, B.
B. Tetrahedron Lett. 1987, 28, 845; (b) Snider, B. B.;
Buckman, B. O. Tetrahedron 1989, 45, 6969, and refer-
ences cited therein; (c) Aidhen, I. S.; Narasimhan, N. S.
Tetrahedron Lett. 1989, 30, 5323; (d) Artis, D. R.; Cho,
I.-S.; Muchoswki, J. M. Can. J. Chem. 1992, 70, 1838.
5. (a) Artis, D. R.; Cho, I.-S.; Figueroa, S. J.; Muchoswki, J.
M. J. Org. Chem. 1994, 59, 2456; (b) Bertilsson, B.-M.;
Gustafsson, B.; Kuhn, I.; Torsell, K. Acta Chem. Scand.
1970, 24, 3590; (c) Minisci, F.; Vismara, E.; Fontana, F. J.
Org. Chem. 1992, 57, 6817; (d) Bacciochi, E.; Muraglia, E.;
Sleiter, G. J. Org. Chem. 1992, 57, 6817; (e) Miranda, L.
In closing, radical cyclizations to quinolone and isoqui-
nolone systems under both Fenton-type and n-Bu3SnH-
mediated conditions are described. When successful,
N-haloalkylquinolones gave products of oxidative
cyclization under both conditions, whereas N-halo-
alkylisoquinolones afforded oxidative cyclization prod-
ucts under Fenton-type conditions and reductive
cyclization products under n-Bu3SnH/AIBN mediated
conditions.
ꢀ
D.; Cruz-Almanza, R.; Pavon, M. ARKIVOC 2002, 15.
6. For extensive lead references to benzoindolizidine and
benzoquinolizidine alkaloids, see: The Alkaloids, A Spe-
cialist Periodical Report; The Royal Society of Chemistry:
London; Vol. 1-13.
7. Gould, R. G., Jr.; Jacobs, W. A. J. Am. Chem. Soc. 1939,
61, 2890–2895.
8. Branson Models B-2200R-B ultrasonic bath type cleaners
were used.
Figure 1. ORTEP drawing of the isoquinolinium salt 18.