Journal of the American Chemical Society
Communication
(8) Lei, H.; Rovis, T. Ir-Catalyzed Intermolecular Branch-Selective
Allylic C−H Amidation of Unactivated Terminal Olefins. J. Am.
Chem. Soc. 2019, 141, 2268. For conceptually related transformations
reported by others, see: (a) Knecht, T.; Mondal, S.; Ye, J. H.; Das, M.;
Glorius, F. Intermolecular, Branch-Selective, and Redox-Neutral
Cp*Ir(III) -Catalyzed Allylic C-H Amidation. Angew. Chem., Int. Ed.
2019, 58, 7117. (b) Burman, J. S.; Harris, R. J.; Farr, C. M. B.; Bacsa,
J.; Blakey, S. B. Rh(III) and Ir(III)Cp* Complexes Provide
Complementary Regioselectivity Profiles in Intermolecular Allylic
C−H Amidation Reactions. ACS Catal. 2019, 9, 5474.
(9) Semakul, N.; Jackson, K. E.; Paton, R. S.; Rovis, T.
Heptamethylindenyl (Ind*) enables diastereoselective benzamidation
of cyclopropenes via Rh(III)-catalyzed C-H activation. Chem. Sci.
2017, 8, 1015.
(10) Piou, T.; Romanov-Michailidis, F.; Romanova-Michaelides, M.;
Jackson, K. E.; Semakul, N.; Taggart, T. D.; Newell, B. S.; Rithner, C.
D.; Paton, R. S.; Rovis, T. Correlating Reactivity and Selectivity to
Cyclopentadienyl Ligand Properties in Rh(III)-Catalyzed C−H
Activation Reactions: An Experimental and Computational Study. J.
Am. Chem. Soc. 2017, 139, 1296.
(11) (a) Intrieri, D.; Zardi, P.; Caselli, A.; Gallo, E. Organic azides:
“energetic reagents” for the intermolecular amination of C-H bonds.
Chem. Commun. 2014, 50, 11440. (b) Shin, K.; Kim, H.; Chang, S.
Transition-metal-catalyzed C-N bond forming reactions using organic
azides as the nitrogen source: a journey for the mild and versatile C-H
amination. Acc. Chem. Res. 2015, 48, 1040. (c) Park, Y.; Park, K. T.;
Kim, J. G.; Chang, S. Mechanistic Studies on the Rh(III)-Mediated
Amido Transfer Process Leading to Robust C−H Amination with a
New Type of Amidating Reagent. J. Am. Chem. Soc. 2015, 137, 4534.
(12) The presence of proximal nucleophilic functional groups leads
to their interception of the cationic intermediates formed in the
reaction. For example, benzyl hexenyl ether forms aminomethyl
tetrahydropyran in good yield under these reaction conditions (for
more limitations, see SI).
ACKNOWLEDGMENTS
■
We gratefully acknowledge NIGMS (GM80442) for funding.
Single crystal X-ray diffraction was performed at the Shared
Materials Characterization Laboratory (SMCL) at Columbia
University. Use of the SMCL was made possible by funding
from Columbia University.
REFERENCES
■
(1) (a) Vitaku, E.; Smith, D. T.; Njardarson, J. T. Analysis of the
Structural Diversity, Substitution Patterns, and Frequency of Nitrogen
Heterocycles among U.S. FDA Approved Pharmaceuticals. J. Med.
Chem. 2014, 57, 10257. (b) Albrecht, Ł.; Jiang, H.; Jørgensen, K. A. A
Simple Recipe for Sophisticated Cocktails: Organocatalytic One-Pot
ReactionsConcept, Nomenclature, and Future Perspectives. Angew.
Chem., Int. Ed. 2011, 50, 8492. (c) MacMillan, D. W. C. The Advent
and Development of Organocatalysis. Nature 2008, 455, 304.
(d) Mukherjee, S.; Yang, J. W.; Hoffmann, S.; List, B. Asymmetric
Enamine Catalysis. Chem. Rev. 2007, 107, 5471. (e) Dalko, P. I.;
Moisan, L. In the Golden Age of Organocatalysis. Angew. Chem., Int.
Ed. 2004, 43, 5138.
(2) (a) Hofmann, A. W. Ueber die Einwirkung des Broms in
̈
alkalischer Losung auf die Amine. Ber. Dtsch. Chem. Ges. 1883, 16,
̈
̈
558. (b) Loffler, K.; Freytag, C. Uber eine neue Bildungsweise von N-
alkylierten Pyrrolidinen. Ber. Dtsch. Chem. Ges. 1909, 42, 3427.
(3) The diversity of approaches to this heterocycle by cyclizations
precludes comprehensive reviews. A SciFinder search on pyrrolidine
cylization involving three different disconnections results in >5
million reactions (May 14, 2019).
(4) For selected reviews, see: (a) Gothelf, K. V.; Jørgensen, K. A.
Asymmetric 1,3-Dipolar Cycloaddition Reactions. Chem. Rev. 1998,
98, 863. (b) Pandey, G.; Banerjee, P.; Gadre, S. R. Construction of
Enantiopure Pyrrolidine Ring System via Asymmetric [3+2]-Cyclo-
addition of Azomethine Ylides. Chem. Rev. 2006, 106, 4484.
(c) Hashimoto, T.; Maruoka, K. Recent Advances of Catalytic
Asymmetric 1,3-Dipolar Cycloadditions. Chem. Rev. 2015, 115, 5366.
(5) For selected recent examples, see: (a) Jui, N. T.; Garber, J. A. O.;
Finelli, F. G.; MacMillan, D. W. C. Enantioselective Organo-SOMO
Cycloadditions: A Catalytic Approach to Complex Pyrrolidines from
Olefins and Aldehydes. J. Am. Chem. Soc. 2012, 134, 11400.
(b) Gesmundo, N. J.; Grandjean, J.-M. M.; Nicewicz, D. A. Amide
and Amine Nucleophiles in Polar Radical Crossover Cycloadditions:
Synthesis of γ-Lactams and Pyrrolidines. Org. Lett. 2015, 17, 1316.
(c) Hao, W.; Wu, X.; Sun, J. Z.; Siu, J. C.; MacMillan, S. N.; Lin, S.
Radical Redox-Relay Catalysis: Formal [3+2] Cycloaddition of N-
Acylaziridines and Alkenes. J. Am. Chem. Soc. 2017, 139, 12141.
(d) Ozawa, T.; Kurahashi, T.; Matsubara, S. [3+2] Cycloaddition of
Aziridines and Alkenes Catalyzed by a Cationic Manganese
Porphyrin. Synlett 2013, 24, 2763. (e) Um, C.; Chemler, S. R.
Synthesis of 2-Aryl- and 2-Vinylpyrrolidines via Copper-Catalyzed
Coupling of Styrenes and Dienes with Potassium β-Aminoethyl
Trifluoroborates. Org. Lett. 2016, 18, 2515. (f) Restorp, P.; Fischer,
A.; Somfai, P. Stereoselective Synthesis of Functionalized Pyrrolidines
via a [3+2]-Annulation of N-Ts-α-Amino Aldehydes and 1,3-
Bis(Silyl)Propenes. J. Am. Chem. Soc. 2006, 128, 12646.
(13) Nyasse, B.; Grehn, L.; Maia, H. L. S.; Monteiro, L. S.;
Ragnarsson, U. 2-Naphthalenesulfonyl as a Tosyl Substitute for
Protection of Amino Functions. Cyclic Voltammetry Studies on
Model Sulfonamides and Their Preparative Cleavage by Reduction. J.
Org. Chem. 1999, 64, 7135.
(14) (a) Li, Z.; Conser, K. R.; Jacobsen, E. N. Asymmetric Alkene
Aziridination with Readily Available Chiral Diimine-Based Catalysts.
J. Am. Chem. Soc. 1993, 115, 5326. (b) Evans, D. A.; Faul, M. M.;
Bilodeau, M. T.; Anderson, B. A.; Barnes, D. M. Bis(oxazoline)-
Copper Complexes as Chiral Catalysts for the Enantioselective
Aziridination of Olefins. J. Am. Chem. Soc. 1993, 115, 5328. (c) Jeong,
J. U.; Tao, B.; Sagasser, I.; Henniges, H.; Sharpless, K. B. Bromine-
Catalyzed Aziridination of Olefins. A Rare Example of Atom-Transfer
Redox Catalysis by a Main Group Element. J. Am. Chem. Soc. 1998,
120, 6844. (d) Dauban, P.; Dodd, R. H. PhI = NSes: A New
Iminoiodinane Reagent for the Copper-Catalyzed Aziridination of
Olefins. J. Org. Chem. 1999, 64, 5304. (e) Guthikonda, K.; Du Bois, J.
A unique and highly efficient method for catalytic olefin aziridination.
J. Am. Chem. Soc. 2002, 124, 13672. (f) Muller, P.; Fruit, C.
̈
Enantioselective Catalytic Aziridinations and Asymmetric Nitrene
Insertions into C-H Bonds. Chem. Rev. 2003, 103, 2905. (g) Cui, Y.;
He, C. Efficient Aziridination of Olefins Catalyzed by a Unique
Disilver(I) Compound. J. Am. Chem. Soc. 2003, 125, 16202.
(h) Catino, A. J.; Nichols, J. M.; Forslund, R. E.; Doyle, M. P.
Efficient Aziridination of Olefins Catalyzed by Mixed-Valent
Dirhodium(II,III) Caprolactamate. Org. Lett. 2005, 7, 2787.
(i) Gao, G. Y.; Harden, J. D.; Zhang, X. P. Cobalt-catalyzed efficient
aziridination of alkenes. Org. Lett. 2005, 7, 3191. (j) Watson, I. D. G.;
Yu, L.; Yudin, A. K. Advances in nitrogen transfer reactions involving
aziridines. Acc. Chem. Res. 2006, 39, 194. (k) Degennaro, L.;
Trinchera, P.; Luisi, R. Recent Advances in the Stereoselective
Synthesis of Aziridines. Chem. Rev. 2014, 114, 7881. (l) Zhu, Y.;
Wang, Q.; Cornwall, R. G.; Shi, Y. Organocatalytic Asymmetric
Epoxidation and Aziridination of Olefins and Their Synthetic
Applications. Chem. Rev. 2014, 114, 8199. (m) Jat, J. L.; Paudyal,
(6) (a) Trost, B. M.; Silverman, S. M. Enantioselective Construction
of Pyrrolidines by Palladium-Catalyzed Asymmetric [3+2] Cyclo-
addition of Trimethylenemethane with Imines. J. Am. Chem. Soc.
2012, 134, 4941. (b) Trost, B. M.; Silverman, S. M. Enantioselective
Construction of Highly Substituted Pyrrolidines by Palladium-
Catalyzed Asymmetric [3+2] Cycloaddition of Trimethylenemethane
with Ketimines. J. Am. Chem. Soc. 2010, 132, 8238. (c) Trost, B. M.;
Silverman, S. M.; Stambuli, J. P. Palladium-Catalyzed Asymmetric
[3+2] Cycloaddition of Trimethylenemethane with Imines. J. Am.
Chem. Soc. 2007, 129, 12398.
́
(7) Floden, N. J.; Trowbridge, A.; Willcox, D.; Walton, S. M.; Kim,
Y.; Gaunt, M. J. Streamlined Synthesis of C(Sp3)−Rich N-
Heterospirocycles Enabled by Visible-Light-Mediated Photocatalysis.
J. Am. Chem. Soc. 2019, 141, 8426.
D
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX