Please do not adjust margins
ChemComm
Page 4 of 4
COMMUNICATION
Journal Name
Ph
N
N
1
Ph
O
Ph
OTBS
OTBS
5 mol %
PPh3AuNTf2
DOI: 10.1039/D0CC06875F
i) work-up
Doi: 10.1021/acs.chemrev.0c00348.
M. B. Smith and J. March, March’s Advanced Organic
Chemistry, 2007, 6th edn, p. 29.
(1)
+
Ph
ii) 3.0 equiv
PhNHNH2
DCE, rt, 6 h
Cl
N
O
Cl
DCE, rt, 4 h
CN
2
3
CN
10
possible product
CN
1a
2a
11
, 54%
(2 equiv)
(a) Q. Wang, M. Rudolph, F. Rominger and A. S. K. Hashmi, Adv.
Synth. Catal., 2020, 362, 755. (b) V. Ku-kushkin, D. Dar'in and
A. Dubovtsev, Adv. Synth. Catal., 2019, 361, 2926. (c) V. A.
Rassadin, V. P. Boyarskiy and V. Y. Kukushkin, Org. Lett., 2015,
17, 3502. (d) S. N. Karad and R. Liu, Angew. Chem. Int. Ed.,
2014, 53, 5444. (e) W. He, C. Li and L. Zhang, J. Am. Chem. Soc.,
2011, 133, 8482.
For gold-catalyzed reactions involving nitriles without the use
of an oxidant see: (a) R. Vanjari, S. Dutta, M. P. Gogoi, V.
Gandon and Sahoo, A, K. Org. Lett., 2018, 20, 8077. (b) S. N.
Karad and R. Liu, Angew. Chem. Int. Ed., 2014, 53, 9072. (c) Y.
Xiao and L. Zhang, Org. Lett., 2012, 14, 4662. (d) A. S. Demir,
M. Emrullahoglu and K. Buran, Chem. Commun., 2010, 46,
8032. (e) R. S. Ramón, N. Marion and S. P. Nolan. Chem. Eur.
J. 2009, 15, 8695.
2.0 equiv H2O
5 mol % PPh3AuNTf2
DCE, rt, 4 h
0.5 equiv Zn(OTf)2
(2)
(3)
1a
1a
+
2a
3a, 69%
100 oC, 2 h
2.0 equiv
2.0 equiv H2O
100 oC, 2 h
5 mol % PPh3AuNTf2
DCE, rt, 4 h
+
2a
3a
2.0 equiv
not observed
4
20 equiv MeOH
0.5 equiv Zn(OTf)2
10 mol % (ArO)3PAuCl
10 mol % AgNTf2
(4)
(5)
1a
1a
+
2a
5a
, 60%
100 oC, 2 h
DCE, rt, 4 h
2.0 equiv
O
Ph
5 mol % PPh3AuNTf2
2.0 equiv H218O (18O = 94%)
0.5 equiv Zn(OTf)2
+
2a
DCE, 100 oC, 2 h
NH
2.0 equiv
18O
79%, 18O = 66%
5
6
R. C. Larcok, Comprehensive Organic Transformations: A
Guide to Functional Group Preparations. 2nd ed. VCH: New
York, U.S.A, 1999.
18
3a,
O-
Scheme 5. Mechanistic studies
For the synthesis of isoquinolinones, see: (a) P. Jagtap, E.
Baloglu, G. Southan, W. Williams, A. Roy, A. Nivorozhkin, N.
Landrau, K. Desisto, A. Salzman and C. Szabó, Org. Lett., 2005,
7, 1753. (b) F. Wang, H. Liu, H. Fu, Y. Jiang and Y. Zhao, Org.
Lett., 2009, 11, 2469. (c) V. Tyagi, S. Khan, A. Giri, H. Gauniyal,
B. Sridhar and P. Chauhan, Org. Lett., 2012, 14, 3126. (d) N.
Webb, S. Marsden and S. Raw, Org. Lett., 2014, 16, 4718. (e)
B. Niu, R. Liu, Y. Wei and M. Shi, Org. Chem. Front., 2018, 5,
1466. (f) Y. Zhao, C. Shi, X. Sua and W. Xia, Chem. Commun.,
2020, 56, 5259. (g) There is only one report for the synthesis
of isoquinolinones bearing an aryl ketone moiety (one
example in the paper) through the reaction of ortho-
functionalized aryl ester with 1,3,5-triazine under strong basic
conditions: J. Hayashida and S. Yoshida, Tetrahedron Lett.,
2018, 59, 3876.
path a:
R1
R1
R1
-
+
LAu+
O-Z
LAu+
Z+
O
R1
O
R1
LAu
O
LAu+
O
LAu
OTBS
LA
OTBS
-LAu+
+LAu+
OTBS
OTBS
OTBS
N
N
N
N
N
LA
LA
12
13
14
10
-
+
O-Z = N-oxide
R1
O
R1
R1
O
R1
O
O
LAu
LAu
OTBS
OTBS
H+
or
NH
N
R
N
-LA
TBSOH
LAu+
N
ROH = H2O or alcohol
O
LA
O
OR
15
ROH
3
5
path b:
R1
O
O
R1
O
R1
O
R1
7
(a) J. Chen, H. Peng, J. He, X. Huan, Z. Miao and C. Yang, Bioorg.
Med. Chem. Lett., 2014, 24, 2669. (b) E. Kiselev, N. Empey, K.
Agama, Y. Pommier and M. Cushman, J. Org. Chem., 2012, 77,
5167. (c) J. H. Rigby, U. S. M. Maharoof and M. E. Mateo, J.
Am. Chem. Soc., 2000, 122, 6624.
O
LAu
LAu
LAu
LAu
OTBS
OTBS
OTBS
OTBS
H+
OR
N
NH
HOR
-LA
R
N
LA
O
R
LA
NH
R1
14
16
17
18
O
R1
O
8
9
CCDC-2006747 (3a), -2006748 (5a), and -2006749 (7b)
contain the supplementary crystallographic data for this
paper.
(a) A. Guérinot, W. Fang, M. Sircoglou, C. Bour, S. Bez-zenine-
Lafollée and V. Gandon, Angew. Chem. Int. Ed., 2013, 52, 5848.
(b) J. Han, N. Shimizu, Z. Lu, H. Amii, G. B. Hammond and B.
Xu, Org. Lett., 2014, 16, 3500.
LAu
OTBS
H+
3
5
or
NH
R
NH
R
H+
TBSOH
LAu+
O+
20
O+
19
Scheme 6. Possible reaction mechanism
In summary, we have developed a new reaction pattern of
gold-catalyzed oxidative cyclization of alkyne-nitriles. The
catalytic system, featured on the gold and Lewis acid dual
catalysis, allows facile synthesis of functionalized isoquinolin-
1(2H)-ones and isoquinolines which are privileged motifs in
many bioactive and pharmaceutical substances. Further
application of this new dual catalysis are currently underway in
our laboratory.
We thank the National Key Research and Development
Program (2016YFA0202900), the Science and Technology Com
mission of Shanghai Municipality (18XD1405000), and the
Strategic Priority Research Program of the Chinese Academy of
Sciences (XDB20000000) for financial support.
10 For the proposed mechanism, see supporting information.
11 (a) J. Zhao, W. Xu, X. Xie, N. Sun, X. Li and Y. Liu, Org. Lett.,
2018, 20, 5461. (b) L. Wang, X. Xie and Y. Liu, Angew. Chem.,
Int. Ed., 2013, 52, 13302. (c) For DFT calculations involving
1,2-aryl migration, see: F. Zarkoob and A. Ariafard,
Organometallics, 2019, 38, 489.
12 When 6-phenylhex-5-ynenitrile was used as a substrate, (E)-
6-oxo-6-phenylhex-4-enenitrile was obtained derived from
1,2-H migration, see supporting information.
13 X. Yao, T. Wang, X. Zhang, P. Wang, B. Zhang, J. Wei and Z.
Zhang, Adv. Synth. Catal., 2016, 358, 1534.
14 For gold(I)-catalyzed intramolecular carboalkoxylation of
Alkynes initiated through attack of a -OMe group to the alkyne,
see: P. Dubeand and F. D. Toste, J. Am. Chem. Soc., 2006, 128,
12062.
Notes and references
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins