Organic Letters
Letter
(c) Ochiai, M.; Sumi, K.; Takaoka, Y.; Kunishima, M.; Nagao, Y.; Shiro,
M.; Fujita, E. Tetrahedron 1988, 44, 4095−4112.
AUTHOR INFORMATION
■
Corresponding Author
ORCID
(13) (a) Liu, C.;Wang, Q. Org. Lett. 2016, 18, 5118−5121. (b)Holt, D.;
Gaunt, M. J. Angew. Chem., Int. Ed. 2015, 54, 7857−7861. (c) Cahard, E.;
Bremeyer, N.; Gaunt, M. J. Angew. Chem., Int. Ed. 2013, 52, 9284−9288.
(d) Suero, M. G.; Bayle, E. D.; Collins, B. S. L.; Gaunt, M. J. J. Am. Chem.
Soc. 2013, 135, 5332−5335. (e) Skucas, E.; MacMillan, D. W. C. J. Am.
Chem. Soc. 2012, 134,9090−9093. (f)Liu, C.;Zhang, W.;Dai, L.-X.;You,
S.-L. Org. Lett. 2012, 14, 4525−4527. (g) Thielges, S.; Bisseret, P.;
Eustache, J. Org. Lett. 2005, 7, 681−684. (h) Yoshida, M.; Komata, A.;
Hara, S. J. Fluorine Chem. 2004, 125, 527−529. (i) Pirguliyev, N. S.; Brel,
V. K.; Zefirov, N. S.; Stang, P. J. Tetrahedron 1999, 55, 12377−12386.
(j)Moriarty, R.M.;Epa,W.R.;Awasthi, A.K. J.Am. Chem. Soc.1991,113,
6315−6317.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We acknowledge financial support from the National Science
Centre, Poland (grant no. 2014/15/D/ST5/02579). We thank
Dominika Strzelecka and Tomasz R. Ratajczak (Centre of New
Technologies, University of Warsaw) for assistance with MS and
IR analysis.
(14) (a) There are only a few cases reported wherein aryl(vinyl)
iodonium saltswiththearyl groupotherthanphenylhavebeenused. The
effect of varying the aryl substituent has usually not been explicitly
discussed. See, for example, refs 12b, 13b−d. (b) Sheng, J.; Wang, Y.; Su,
X.; He, R.; Chen, C. Angew. Chem., Int. Ed. 2017, 56, 4824−4828.
(15) Ochiai, M.; Toyonari, M.; Nagaoka, T.; Chen, D.-W.; Kida, M.
Tetrahedron Lett. 1997, 38, 6709−6712.
(16) Vinylbenziodoxolone (see ref 12a) does not provide any of the
desired product under these conditions.
(17) 2-Methoxyphenyl has also been established to be a superior
auxiliary group promoting alkynyl transfer from alkynyl(aryl)iodonium
salts, see: Hamnett, D. J.; Moran, W. J. Org. Biomol. Chem. 2014, 12,
4156−4162.
(18) A mechanistic study: (a) Malmgren, J.; Santoro, S.; Jalalian, N.;
Himo, F.; Olofsson, B. Chem. - Eur. J. 2013, 19, 10334−10342.
representative examples: (b) Lukamto, D. H.; Gaunt, M. J. J. Am. Chem.
Soc. 2017, 139, 9160−9163. (c) Tolnai, G. L.; Nilsson, U. J.; Olofsson, B.
Angew. Chem., Int. Ed. 2016, 55, 11226−11230. (d) Reitti, M.; Villo, P.;
Olofsson, B. Angew. Chem., Int. Ed. 2016, 55, 8928−8932. (e) Dey, C.;
Lindstedt, E.; Olofsson, B. Org. Lett. 2015, 17, 4554−4557. (f) Cahard,
E.; Male, H. P. J.; Tissot, M.; Gaunt, M. J. J. Am. Chem. Soc. 2015, 137,
7986−7989. (g) Walkinshaw, A. J.; Xu, W.; Suero, M. G.; Gaunt, M. J. J.
Am. Chem. Soc. 2013, 135, 12532−12535. (h) Zhu, S.; MacMillan, D. W.
C. J. Am. Chem. Soc. 2012, 134, 10815−10818. (i) Allen, A. E.;
MacMillan, D. W. C. J. Am. Chem. Soc. 2011, 133, 4260−4263.
(19) (a) The vinyl transfer from vinyliodonium salts may possibly lead
to either retention or inversion of the double bond geometry, or
rearrangement. For details, see ref 10d. (b) Miyamoto, K.; Suzuki, M.;
Suefuji, T.; Ochiai, M. Eur. J. Org. Chem. 2013, 2013, 3662−3666.
(c) Slegt, M.; Gronheid, R.; van der Vlugt, D.; Ochiai, M.; Okuyama, T.;
Zuilhof, H.; Overkleeft, H. S.; Lodder, G. J. Org. Chem. 2006, 71, 2227−
2235. (d) Fujita, M.; Kim, W. H.; Fujiwara, K.; Okuyama, T. J. Org. Chem.
2005, 70, 480−488. (e) Fujita, M.; Kim, W. H.; Sakanishi, Y.; Fujiwara,
K.; Hirayama, S.; Okuyama, T.; Ohki, Y.; Tatsumi, K.; Yoshioka, Y. J. Am.
Chem. Soc. 2004, 126, 7548−7558. (f)Okuyama, T. Acc. Chem. Res. 2002,
35, 12−18. (g) Fujita, M.; Sakanishi, Y.; Nishii, M.; Okuyama, T. J. Org.
Chem. 2002, 67, 8138−8146. (h) Ochiai, M.; Kitagawa, Y.; Yamamoto, S.
J. Am. Chem. Soc. 1997, 119, 11598−11604.
REFERENCES
■
(1) (a) Pellissier, H. Adv. Synth. Catal. 2015, 357, 2745−2780.
(b) Schmid, T. E.; Drissi-Amraoui, S.; Crev
Beilstein J. Org. Chem. 2015, 11, 2418−2434. (c) Nair, D. P.; Podgor
M.; Chatani, S.; Gong, T.; Xi, W.; Fenoli, C. R.; Bowman, C. N. Chem.
Mater. 2014, 26, 724−744.
(2) (a) Heravi, M. M.; Ahmadi, T.; Ghavidel, M.; Heidari, B.; Hamidi,
H. RSC Adv. 2015, 5, 101999−102075. (b) Gregoritza, M.; Brandl, F. P.
Eur. J. Pharm. Biopharm. 2015, 97, 438−453. (c) Eschenbrenner-Lux, V.;
Kumar, K.; Waldmann, H. Angew. Chem., Int. Ed. 2014, 53, 11146−
11157.
(3) (a) Hu, F.-L.; Shi, M. Org. Chem. Front. 2014, 1, 587−595.
(b) Bhowmik, S.; Batra, S. Curr. Org. Chem. 2015, 18, 3078−3119.
(c) Wei, Y.; Shi, M. Chem. Rev. 2013, 113, 6659−6690.
(4) (a) Arshad, L.; Jantan, I.; Bukhari, S. N. A.; Haque, M. A. Front.
Pharmacol. 2017, 8, 00022. (b) Sahu, N. K.; Balbhadra, S. S.; Choudhary,
J.; Kohli, D. V. Curr. Med. Chem. 2012, 19, 209−225. (c) Amslinger, S.
ChemMedChem 2010, 5, 351−356.
́
isy, C.; Basle,
́
O.; Mauduit, M.
ski,
́
(5)(a)Pearson, C. M.;Snaddon, T. N. ACSCent. Sci. 2017, 3, 922−924.
(b) Zhu, Y.; Sun, L.; Lu, P.; Wang, Y. ACS Catal. 2014, 4, 1911−1925.
(c) Lee, H.-W.; Kwong, F.-Y. Eur. J. Org. Chem. 2010, 2010, 789−811.
(d) Muzart, J. Eur. J. Org. Chem. 2010, 2010, 3779−3790.
(6) (a) Ghosh, A.; Johnson, K. F.; Vickerman, K. L.; Walker, J. A.;
Stanley, L. M. Org. Chem. Front. 2016, 3, 639−644. (b) Leung, J. C.;
Krische, M. J. Chem. Sci. 2012, 3, 2202−2209. (c) Willis, M. C. Chem. Rev.
2010, 110, 725−748.
(7) Wang, J.; Liu, C.; Yuan, J.; Lei, A. Angew. Chem., Int. Ed. 2013, 52,
2256−2259.
(8) (a)Menon, R. S.;Biju, A. T.;Nair, V. BeilsteinJ. Org. Chem. 2016, 12,
444−461. (b) Flanigan, D. M.; Romanov-Michailidis, F.; White, N. A.;
Rovis, T. Chem. Rev. 2015, 115, 9307−9387. (c) Moore, J. L.; Rovis, T.
Top. Curr. Chem. 2009, 291, 77−144.
(20) Mahatthananchai, J.; Bode, J. W. Chem. Sci. 2012, 3, 192−197.
(21) For examples of the beneficial effect of fluoride counterion on the
efficiency of aryl transfer from diaryliodonium salts, see: (a) Chan, L.;
McNally, A.; Toh, Q. Y.; Mendoza, A.; Gaunt, M. J. Chem. Sci. 2015, 6,
1277−1281. (b) Chen, K.; Koser, G. F. J. Org. Chem. 1991, 56, 5764−
5767.
(22) Under these conditions, benzaldehyde and 4-methoxybenzalde-
hyde give 33% and 7% product, respectively.
(23) Li, Z.; Khaliq, M.; Zhou, Z.; Post, C. B.; Kuhn, R. J.; Cushman, M. J.
Med. Chem. 2008, 51, 4660−4671.
(9) Toh, Q. Y.; McNally, A.; Vera, S.; Erdmann, N.; Gaunt, M. J. J. Am.
Chem. Soc. 2013, 135, 3772−3775.
(10) (a) Yoshimura, A.; Zhdankin, V. V. Chem. Rev. 2016, 116, 3328−
3435. (b) Yusubov, M. S.; Maskaev, A. V.; Zhdankin, V. V. ARKIVOC
2011, 370−409. (c) Zhdankin, V. V.; Stang, P. J. Chem. Rev. 2008, 108,
5299−5358. (d) Ochiai, M. J. Organomet. Chem. 2000, 611, 494−508.
(e) Pirkuliev, N. S.; Brel, V. K.; Zefirov, N. S. Russ. Chem. Rev. 2000, 69,
105−120.
(11) (a) Zawia, E.; Moran, W. Molecules 2016, 21, 1073. (b) Yan, J.; Jin,
H.; Chen, Z. J. Chem. Res. 2007, 2007, 233−235. (c) Guan, T.; Yoshida,
M.; Hara, S. J. Org. Chem. 2007, 72, 9617−9621. (d) Hara, S.; Guan, T.;
Yoshida, M. Org. Lett. 2006, 8, 2639−2641. (e) Chen, J.-M.; Huang, X.
Synlett 2004, 552−554. (f) Ochiai, M.; Yamamoto, S.; Suefuji, T.; Chen,
D.-W. Org. Lett. 2001, 3, 2753−2756.
(24) Attempts to measure the initial rate by performing the reaction at
lower concentration (0.02 M) or temperature (−78 °C, in CH2Cl2) were
unsuccessful, asundertheseconditionstheformationof>30%ofproduct
was still observed within the first 5 min.
(12) (a) Stridfeldt, E.; Seemann, A.; Bouma, M. J.; Dey, C.; Ertan, A.;
Olofsson, B. Chem. - Eur. J. 2016, 22, 16066−16070. (b) Ochiai, M.; Shu,
T.; Nagaoka, T.; Kitagawa, Y. J. Org. Chem. 1997, 62, 2130−2138.
D
Org. Lett. XXXX, XXX, XXX−XXX