A. A. G. Faraco et al. / Tetrahedron Letters 45 (2004) 3317–3320
3319
1035.5001 calculated for C62H70N2O12+Hþ), which dis-
plays a m=z ratio and an isotopic distribution that
matches that of the protonated molecule of a dimer of
lactam 1 (2 · C31H35NO6). The ESI-MS/MS spectrum of
the protonated molecule (MHþ) is also very indicative of
dimerization since it shows that MHþ dissociates to a
great extent by Ôin-halfÕ breaking, that is, by loosing a
neutral molecule of C31H35NO6 composition (517 u,
likely a neutral molecule of the monomeric lactam 1) to
form a fragment ion of m=z 518 witha [C 31H35NO6+H]þ
composition. The ESI-MS and ESI-MS/MS data indi-
cates therefore that a dimer of 1 has been formed, likely
the new 20-membered benzomacrodilactam 10.
for fellowship. The authors thank CNPq, the Fundaßcao
~
de Amparo a Pesquisa do Estado de Minas Gerais
ꢁ
~
ꢁ
(FAPEMIG) and Fundaßcao de Amparo a Pesquisa
~
do Estado de Sao Paulo (FAPESP) for financial
support.
References and notes
1. Prado, M. A. F.; Alves, R. J.; Souza Filho, J. D.; Alves, R.
B.; Pedrosa, M. T. C.; Prado, R. F.; Faraco, A. A. G.
J. Chem. Soc., Perkin Trans. 1 2000, 1853–1857.
2. Binatti, I.; Prado, M. A. F.; Alves, R. J.; Souza-Filho,
J. D. J. Braz. Chem. Soc. 2002, 3, 570–575.
3. Faraco, A. A. G.; Prado, M. A. F.; Alves, R. J.; Souza-
Filho, J. D.; Alves, R. B.; Faraco, R. F. Synth. Commun.
2003, 33, 463–474.
4. Oliveira, R. B.; Prado, M. A. F.; Alves, R. J.; Souza-Filho,
J. D. J. Braz. Chem. Soc. 2003, 14, 442–448.
5. Porter, N. A.; Chang, V. H. T. J. Am. Chem. Soc. 1987,
109, 4976–4981.
6. Gibson, S. E.; Guilo, N.; Tozer, M. J. Chem. Commun.
1997, 637–638.
7. Chattopadhayay, P.; Mukherjee, M.; Ghosh, S. Chem.
Commun. 1997, 2139–2140.
8. Ghosh, A. K.; Ghosh, K.; Pal, S.; Ghatak, U. R. J. Chem.
Soc., Chem. Commun. 1993, 809–811.
NMR analysis: The 1H and 13C NMR data of the major
product, likely 10, reveals the presence of two carbo-
hydrate moieties, two metoxy groups, two amide car-
bonyl, two amide hydrogen, six phenyl and twelve sp3
metylenes, eight of them bearing an oxygen atom (two
of sugar unit, four benzyloxy groups and two methylene
deriving from allyloxy group). These NMR data, simi-
larly to the ESI-MS data, suggests the molecule to dis-
play a dimeric structure. The 20-membered ring is
suggested by the presence of four sp3 methylene groups,
which are not bounded to a heteroatom. Connectivity
studies by COSY, TOCSY, HMQC and HMBC exper-
iments enabled us to depict the structure of 10 in detail.
9. Ghosh, K.; Ghosh, A. K.; Ghatak, U. R. J. Chem. Soc.,
Chem. Commun. 1994, 629–630.
10. Ghosh, K.; Ghatak, U. R. Tetrahedron Lett. 1995, 36,
4897–4900.
11. Nandi, A.; Mukhopadhyay, R.; Chattopadhyay, P. J.
Chem. Soc., Perkin Trans. 1 2001, 3346–3351.
12. Nandi, A.; Chattopadhyay, P. Tetrahedron Lett. 2002, 43,
5977–5980.
13. Baldwin, J. E.; Adlington, R. M.; Ramcharitar, S. H.
Tetrahedron 1992, 48, 3413–3428.
We proposed that lactam 10 could have been formed by
an initial unusual intermolecular radical reaction fol-
lowed by a 20-endo cyclization process. We believe that
an intermolecular reaction is favored in this case owing
to the known constraints associated with 10-ring clo-
sure.13;14 Bu3SnH-mediated intermolecular addition of
aryl radicals to the double bound of alkenes has been
reported,24 which could support the unusual bimolecular
addition of aryl radical of 2 to sp2 terminal carbon of
allyloxy group of another molecule of 2. This preferen-
tial intermolecular attack, instead of that to benzene to
form the fully aromatized product as a consequence of
deproportionation or oxidation of the intermediate cy-
clohexenyl radical,25 can be explain by assuming that the
rate constant of the former reaction is smaller based on
the rate constants for the reactions of phenyl radicals to
benzene (4.5 · 105) and cyclohexene (2.8 · 108).26
ꢀ
ꢀ
14. Lamas, C.; Saa, L.; Castedo, L.; Domınguez, D. Tetrahe-
dron Lett. 1992, 33, 5653–5654.
15. Horton, D.; Sorenson, R. J.; Weckerle, W. Carbohydr.
Res. 1977, 58, 125–138.
16. Hall, D. M. Carbohydr. Res. 1980, 86, 158–160.
17. Pietraszkiewicz, M.; Jurckzak, J. Tetrahedron 1984, 40,
2967–2970.
18. Bell, D. J.; Lorder, J. J. Chem. Soc. 1940, 453–455.
ꢀ
19. Frechet, M. J.; Baer, H. H. Can. J. Chem. 1975, 53, 670–
679.
20. Beckwith, A. L. J.; Drok, K.; Maillard, B.; Degueil-
Castaing, M.; Philippon, A. Chem. Commun. 1997, 499–
500.
21. Marinovic, N. N.; Ramanathan, H. Tetrahedron Lett.
1983, 24, 1871–1874.
In summary, Bu3SnH-induced aryl radical cyclization of
ortho-allyloxyiodobenzamide 2 fails to proceeds through
a 10-endo mode, which we expected to afford the 10-
membered lactam 1. Instead, 2 forms predominantly the
macrolactam 10, as indicated by MS and NMR analysis.
Formation of the new 20-membered macrocycle dilac-
tam 10 shows the potential of Bu3SnH-mediated aryl
radical cyclization in the synthesis of macrocycles
incorporating large rings and polyfunctional groups.
22. The 20-membered dilactam is an oil; ½aꢁ +18 (c 0.57,
D
CHCl3); ESIMS m=z [Mꢀ], 1034.4929, [M+H]þ 1035.4962.
C62H70N2O12 requires for [Mꢀ] 1034.492876 and for
[M+H]þ 1035.500701.
23. (a) Kotiaho, T.; Eberlin, M. N.; Vainiotalo, P.; Kostiai-
nen, R. J. Am. Soc. Mass Spectrom. 2000, 11, 526; (b)
Rioli, V.; Gozzo, F. C.; Shida, C. S.; Krieger, J. E.;
Heimann, A. S.; Linardi, A.; Almeida, P. C.; Hyslop, S.;
Eberlin, M. N.; Ferro, E. S. J. Biol. Chem. 2003, 278, 8547;
(c) Koch, K. J.; Gozzo, F. C.; Nanita, S.; Eberlin, M. N.;
Cooks, R. G. Angew. Chem., Int. Ed. 2002, 41, 1721; (d)
Stefani, R.; Eberlin, M. N.; Tomazela, D. M.; Da Costa,
F. B. J. Nat. Prod. 2003, 66, 401–403; (e) Hamerski, L.;
Furlan, M.; Silva, D. H. S.; Cavalheiro, A. J.; Eberlin, M.
Acknowledgements
A.A.G.F. and M.A.F.P. thank the Conselho Nacional
ꢀ ꢀ
de Desenvolvimento Cientıfico e Tecnologico (CNPq)