Page 13 of 15
Journal of the American Chemical Society
(5) (a) Gridnev, I. D., P. A. Dub, Enantioselection in Asymmetric
Molecular Basis for Their Enantiopreference, and Prospects for
Mirror-image Biotransformations. Angew. Chem., Int. Ed. 2008, 47,
8782−8793.
Catalysis, CRC Press, 2016. (b) Blaser, H.-U., Schmidt, E. (eds),
Asymmetric Catalysis on Industrial Scale: Challenges, Approaches
and Solutions, Wiley-VCH, Weinheim, 2011. (c) Walsh, P. J.,
Kozlowsky, M. C., Fundamentals of Asymmetric Catalysis,
University Science Books, 2009.
1
2
3
4
5
6
7
8
(16) For selected reviews of directed evolution,14 see: (a) Turner,
N. J. Directed Evolution Drives the Next Generation of Biocatalysts.
Nat. Chem. Biol. 2009, 5, 567–573. (b) Currin, A.; Swainston, N.;
Day, P. J.; Kell, D. B. Synthetic Biology for the Directed Evolution of
Protein Biocatalysts: Navigating Sequence Space Intelligently. Chem.
Soc. Rev. 2015, 44, 1172–1239. (c) Denard, C. A.; Ren, H.; Zhao, H.
Improving and Repurposing Biocatalysts via Directed Evolution.
Curr. Opin. Chem. Biol. 2015, 25, 55–64. (d) Reetz, M. T. Directed
Evolution of Selective Enzymes: Catalysts for Organic Chemistry and
Biotechnology. Wiley-VCH Weinheim, (2016). (e) Hammer, S. C.;
Knight, A. M.; Arnold, F. H. Design and Evolution of Enzymes for
Non-natural Chemistry. Curr. Opin. Green Sustain. Chem. 2017, 7,
23-30. (f) Zeymer, C., Hilvert, D. Directed Evolution of Protein
Catalysts, Annu. Rev. Biochem. 2018, 87, 131-157.
(6) E. N. Jacobsen. Asymmetric catalysis of epoxide ring-opening
reactions, Acc. Chem. Res. 2000, 33, 421-431.
(7) (a) Krautwald, S.; Sarlah, D.; Schafroth, M. A.; Carreira, E. M.
Enantio- and Diastereodivergent Dual Catalysis: α-Allylation of
Branched Aldehydes, Science 2013, 340, 1065-1068. (b) Sandmeier,
T.; Krautwald, S.; Zipfel, H.F.; Carreira, E.M. Stereodivergent Dual
Catalytic α-Allylation of Protected α-Amino- and α-
Hydroxyacetaldehydes, Angew. Chem. Int. Ed. 2015, 54, 14363 –
14367.
(8) Shi, S.-L.; Wong, Z. L.; Buchwald, S. L. Copper-catalysed
Enantioselective Stereodivergent Synthesis of Amino Alcohols,
Nature 2016, 532, 353-356.
(9) Selected reviews of catalysis involving more than one
stereocenter: (a) Krautwald, S.; Carreira, E. M. Stereodivergence in
Asymmetric Catalysis, J. Am. Chem. Soc. 2017, 139, 5627−5639; (b)
Bihani, M.; Zhao, J.C.G. Advances in Asymmetric Diastereodivergent
Catalysis, Adv. Synth. Catal. 2017, 359(4), 534-575. (c) Bhat, V.;
Welin, E.R.; Guo, X.L.; Stoltz, B. M. Advances in Stereoconvergent
Catalysis from 2005 to 2015: Transition-Metal-Mediated
Stereoablative Reactions, Dynamic Kinetic Resolutions, and Dynamic
Kinetic Asymmetric Transformations, Chem. Rev. 2017, 117(5),
4528–4561. (d) Zheng, C.; You, S.L. Catalytic Asymmetric
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(17) Roiban, G.-D., Agudo, R., Reetz, M. T. Cytochrome P450
Catalyzed Oxidative Hydroxylation of Achiral Organic compounds
with Simultaneous Creation of Two Chirality Centers in a Single C-H
Activation Step. Angew. Chem. Int. Ed. 2014, 126, 8803-8807.
(18) (a) Knight, A.M.; Jennifer Kan, S. B.; Lewis, R.D.;
Brandenberg, O. F.; Chen, K.; Arnold, F.H. Diverse Engineered
Heme Proteins Enable Stereodivergent Cyclopropanation of
Unactivated Alkenes. ACS Cent. Sci., 2018, 4, 372–377. (b) Bajaj, P.;
Sreenilayam, G.; Tyagi, V.; Fasan, R. Gram-Scale Synthesis of Chiral
Cyclopropane-Containing Drugs and Drug Precursors with
Engineered Myoglobin Catalysts Featuring Complementary
Stereoselectivity. Angew. Chem., Int. Ed. 2016, 55, 16110−16114. (c)
Tinoco, A.; Steck, V.; Tyagi, V.; Fasan, R. Highly Diastereo- and
Enantioselective Synthesis of Trifluoromethyl Substituted
Dearomatization by Transition-Metal Catalysis:
A Method for
Transformations of Aromatic Compounds, Chem 2016, 1, 830–857.
(e) Trost, B.M.; Rao, M. Development of Chiral Sulfoxide Ligands
for Asymmetric Catalysis, Angew. Chem. Int. Ed. 2015, 54, 5026-
5043. (f) Chen, D.F.; Han, Z.Y.; Zhou, X.L.; Gong, L.Z. Asymmetric
Organocatalysis Combined with Metal Catalysis: Concept, Proof of
Concept, and Beyond, Acc. Chem. Res. 2014, 47, 2365–2377. (g)
Brak, K.; Jacobsen, E.N. Asymmetric Ion-Pairing Catalysis, Angew.
Chem. Int. Ed. 2013, 52, 534-561. (h) Mahlau, M.; List, B.
Asymmetric Counteranion-Directed Catalysis: Concept, Definition,
and Applications, Angew. Chem. Int. Ed. 2013, 52, 518-533. (i) Yoon,
M.; Srirambalaji, R.; Kim, K. Homochiral Metal–Organic
Frameworks for Asymmetric Heterogeneous Catalysis, Chem. Rev.
2012, 112, 1196–1231. (j) Shibasaki, M.; Kanai, M.; Matsunaga, S.;
Kumagai, N. Recent Progress in Asymmetric Bifunctional Catalysis
Using Multimetallic Systems, Acc. Chem. Res. 2009, 42, 1117–1127.
(10) Reviews of enzyme catalysis in organic and pharmaceutical
chemistry: (a) Biocatalysis in the Pharmaceutical and Biotechnology
Industries, Patel, R. N. (ed.), CRC Press, 2006. (b) Goswami, A.,
Stewart, J. D., Organic Synthesis Using Biocatalysts, Academic Press,
2015. (c) Enzyme Catalysis in Organic Synthesis, Drauz, K., Gröger,
H., May, O. (eds.), Wiley-VCH, Weinheim, 2012. (d) Faber, K.,
Biotransformations in Organic Chemistry: A Textbook, Springer,
Stuttgart, 2011. (e) Liese, A., Seelbach, K., Wandrey, C., Industrial
Biotransformations, Wiley-VCH, Weinheim, 2006.
(11) Archelas, A.; Iacazio, G., Kotik, M. Epoxide hydrolases and
their application in organic synthesis, in Green Biocatalysis (Patel, R.
N., ed.), Wiley, 2016: 978-1-118-82229-6.
(12) Li, A.; Ilie, A.; Sun, Z.; Lonsdale, R.; Xu, J.H.; Reetz, M.T.
Whole-Cell-Catalyzed Multiple Regio- and Stereoselective
Functionalizations in Cascade Reactions Enabled by Directed
Evolution. Angew. Chem. Int. Ed. 2016, 55, 12026-12029.
(13) Erdmann, V.; Lichman, B.R.; Zhao, J.; Simon, R. C.; Kroutil,
W.; Ward, J.M.; Hailes, H.C.; Rother, D. Enzymatic and
Chemoenzymatic Three-Step Cascades for the Synthesis of
Cyclopropanes
via
Myoglobin-Catalyzed
Transfer
of
Trifluoromethylcarbene. J. Am. Chem. Soc. 2017, 139, 5293−5296
(19) Garrabou, X.; Macdonald, D. S., Wicky, B.I.M., Hilvert, D.
Stereodivergent Evolution of Artificial Enzymes for the Michael
Reaction. Angew. Chem. Int. Ed. 2018, 57, 5288 –5291
(20) Selected key studies and reviews of CALB: (a) Anderson, E.
M.; Larsson, K. M.; Kirk, O. One Biocatalyst-many Applications: the
Use of Candida Antarctica B-lipase in Organic Synthesis. Biocatal.
1998, 16, 181 – 204. (b) Uppenberg, J.; Hansen, M. T.; Patkar, S.;
Jones, T. A. The Sequence, Crystal Structure Determination and
Refinement of Two Crystal Forms of Lipase B from Candida
Antarctica. Structure 1994, 2, 293-308. (c) Otto, R. T.; Scheib, H.;
Bornscheuer, U. T.; Pleiss, J.; Syldatk, C.; Schmid, R. D. Substrate
Specificity of Lipase B from Candida Antarctica in the Synthesis of
Arylaliphatic Glycolipids. J. Mol. Catal. B: Enzym. 2000, 8, 201211.
(21) Key studies of protein engineering of CALB using rational
design: (a) Magnusson, A. O.; Takwa, M.; Hamberg, A.; Hult, K. An
S-selective Lipase was Created by Rational Redesign and the
Enantioselectivity Increased with Temperature. Angew. Chem. Int.
Ed. 2005, 117, 4658-4661. (b) Engström, K.; Vallin, M.; Syrén, P. O.;
Hult, K.; Bäckvall, J. E. Mutated Variant of Candida Antarctica
Lipase B in (S)-selective Dynamic Kinetic Resolution of Secondary
Alcohols. Org. Biomol. Chem. 2011, 9, 8182. (c) Marton, Z.;
Léonard-Nevers, V.; Syrén, P.-O.; Bauer, C.; Lamare, S.; Hult, K.;
Tranc, V.; Graber, M. Mutations in the Stereospecificity Pocket and at
the Entrance of the Active Site of Candida Antarctica Lipase B
Enhancing Enzyme Enantioselectivity. J. Mol. Catal. B: Enzym. 2010,
65, 1117. (d) Larsen, M. W.; Zielinska, D. F.; Martinelle, M.;
Hidalgo, A.; Juhl Jensen, L.; Bornscheuer, U. T.; Hult, K.
Suppression of Water as a Nucleophile in Candida Antarctica Lipase
B Catalysis. ChemBioChem, 2010, 11, 796801.
(22) Selected studies of protein engineering of CALB using
directed evolution21: (a) Qian, Z.; Fields, C. J.; Lutz, S. Investigating
the Structural and Functional Consequences of Circular Permutation
on Lipase B from Candida Antarctica. ChemBioChem 2007, 8,
19891996. (b) Qin, B.; Liang, P.; Jia, X.; Zhang, X.; Mu, M.; Wang,
X.Y.; Ma, G.Z.; Jin, D.N.; You, S. Directed Evolution of Candida
Antarctica Lipase B for Kinetic Resolution of Profen Esters. Catal.
Commun. 2013, 38, 1–5. (c) Wu, Q.; Soni, P.; Reetz, M.T. Laboratory
Stereochemically
Complementary
Trisubstituted
Tetrahydroisoquinolines. Angew. Chem. Int. Ed. 2017, 56, 12503-
12507.
(14) Reetz, M. T. Laboratory Evolution of Stereoselective
Enzymes: A Prolific Source of Catalysts for Asymmetric Reactions.
Angew. Chem. Int. Ed. 2011, 50, 138-174.
(15) Mugford, P. F.; Wagner, U. G.; Jiang, Y.; Faber, K.;
Kazlauskas, R. J. Enantiocomplementary Enzymes: Classification,
ACS Paragon Plus Environment