J.-M. Huang et al. / Tetrahedron Letters 45 (2004) 3047–3050
3049
HO
O
Acknowledgements
HO
O
SiMe3
SPh
H
N
OMe
a,b
c
9
N
Financial support by the National Science Council of
the Republic of China is gratefully acknowledged.
SPh
18
19
X
SiMe3
Y
AcO
O
References and notes
AcO
H
N
H
j
g–i
d–f
5
Cl
1. Mattocks, A. R. Chemistry and Toxicology of Pyrrolizidine
Alkaloids; Academic: New York, 1986.
2. Liddell, J. R. Nat. Prod. Rep. 2002, 19, 773–781.
3. Tsai, Y.-M.; Ke, B.-W.; Yang, C.-T.; Lin, C.-H. Tetrahe-
dron Lett. 1992, 33, 7895–7898.
N
SO2Ph
O
20 X = SnBu3, Y = SiMe3
21 X = Br, Y = SiMe3
22 X = OAc, Y = H
8
4. For recent reviews about radical cyclizations in alkaloid
synthesis: (a) Hart, D. J. In Radicals in Organic Synthesis;
Renaud, P., Sibi, M. P., Eds.; Wiley-VCH: New York,
2001; vol. 2, pp 279–302; (b) Bowman, W. R.; Fletcher, A.
J.; Potts, G. B. S. J. Chem. Soc., Perkin Trans. 1 2002,
2747–2762.
5. (a) Chamberlin, A. R.; Chung, J. Y. J. Am. Chem. Soc.
1983, 105, 3653–3656; (b) Choi, J.-K.; Hart, D. J.
Tetrahedron 1985, 41, 3959–3971.
Scheme 4. Reagents and conditions: (a) NaBH4, 0 °C, THF/EtOH; (b)
p-TsOH, MeOH, 95%; (c) ClEt2Si(CCSiMe3) (1.5 equiv), Et3N
(1.5 equiv), 4-DMAP (cat.), CH2Cl2, rt, TiCl4 (3.7 equiv), )78 °C, 80%;
(d) Ac2O, 4-DMAP (cat.), Et3N, CH2Cl2; (e) NCS, CCl4; (f) MCPBA,
CH2Cl2, 85%; (g) Bu3SnH (2.5 equiv), AIBN (0.1 equiv), C6H6, 80 °C,
58% of 20; (h) PhSeBr (2 equiv), LiBr (8 equiv), CH3CN, )40 °C to rt,
97% of 21; (i) KOAc, 18-crown-6, H2O, CH3CN, rt, 84% of 22; (j)
LAH, THF, D, 63%.
6. For the utilization of malic acid in the asymmetric
synthesis of pyrrolizidines, see: Dai, W.-M.; Nagao, Y.;
Fujita, E. Heterocycles 1990, 30, 1231–1261, and refer-
ences cited therein.
7. (a) Mitsunobu, O. Synthesis 1981, 1–28; (b) Hughes, D. L.
Org. React. 1992, 42, 335–656.
Si
O
SiMe3
TiCl4
Si
O
SiMe3
SPh
Si
N
O
8. (a) Huang, P. Q.; Wang, S. L.; Ye, J. L.; Ruan, Y. P.;
Huang, Y. Q.; Zheng, H.; Gao, J. X. Tetrahedron 1998, 54,
12547–12560; (b) Yoda, H.; Kitayama, H.; Yamada, W.;
Katagiri, T.; Takabe, K. Tetrahedron: Asymmetry 1993, 4,
1451–1454.
SiMe3
SPh
OMe
19
N
N
SPh
O
O
O
23
24
25
9. For alternative explanations, see: (a) Cieplak, A. S. Chem.
Rev. 1999, 99, 1265–1336; (b) Ohwada, T. Chem. Rev.
1999, 99, 1337–1375.
Scheme 5.
10. Dilworth, B. M.; McKervey, M. A. Tetrahedron 1986, 42,
3731–3752.
11. Ke, B.-W.; Liu, C.-H.; Tsai, Y.-M. Tetrahedron 1997, 53,
7805–7826.
12. Clive, D. L. J.; Boivin, T. L. B.; Angoh, A. G. J. Org.
Chem. 1987, 52, 4943–4953.
13. Paquette, L. A. Synlett 2001, 1–12.
23 generated the acyliminium ion 24 that cyclized to
form the vinyl cation intermediate 25. Desilylation of 25
regenerated the acetylenic group at the same side of the
transporting oxygen atom.
The rest of the synthesis was carried out in a similar
fashion as in the case of (+)-heliotridine (4). Thus, as
shown in Scheme 4, acetylation of lactam 19 followed by
chlorination and oxidation afforded a-chloro sulfone 8
in an 85% overall yield. Radical cyclization of 8 pro-
vided bicyclic lactam 20 (58%). The bicyclic lactam 20
was then converted to allyl bromide 21 (97%). Substi-
tution of bromide 21 with potassium acetate gave the
desilylated diacetate 2219 (84%). Finally, lithium alumi-
num hydride reduction of 22 produced ())-retronecine
(5)20–22 in 63% yield.
14. Ueno, Y.; Aoki, S.; Okawara, M. J. Am. Chem. Soc. 1979,
101, 5414–5415.
15. The spectroscopic data of this material is identical to that
22:8
reported in the literature (Ref. 5,16). ½aꢀ
+34.7 (c, 0.92
D
25
D
in CHCl3) [lit.16b ½aꢀ +34.4 (c, 2.2 in CHCl3)].
16. (a) Dener, J. M.; Hart, D. J. Tetrahedron 1988, 44, 7037–
7046; (b) Kametani, T.; Yukawa, H.; Honda, T. J. Chem.
Soc., Perkin Trans. 1 1990, 571–577.
€
17. Burli, R.; Vasella, A. Helv. Chim. Acta. Acta 1996, 79,
1159–1168.
18. Hubert, J. C.; Wijnberg, J. B. P. A.; Speckamp, W. N.
Tetrahedron 1975, 31, 1437–1441.
26
D
19. Characterization of 22: ½aꢀ +67.2 (c, 1.11 in CHCl3); IR
In summary, starting from ())-malic acid derived imide
6 we were able to synthesize either (+)-heliotridine (4) or
())-retronecine (5) with high stereoselectivity. Relying
on the pre-existing stereogenic center in imide 6, we
could control the stereochemistry of the newly formed
adjacent chiral center at will. The B-ring of the target
alkaloids was formed through a key radical cyclization
step involving a-sulfonyl radical. The synthetic
approach developed here has the potential to be ex-
tended to the synthesis of the more functionalized
alkaloids of the same family.
(CH2Cl2) 1746 (C@O), 1709 (C@O) cmꢁ1
;
1H NMR
(CDCl3, 400 MHz) d 2.01 (s, 3H, COCH3), 2.06 (s, 3H,
COCH3), 2.38 (d, J ¼ 17:2 Hz, 1H, COCH2), 2.98 (dd,
J ¼ 17:2, 4.8 Hz, 1H, COCH2), 3.77 (br d, J ¼ 17:0 Hz,
1H, NCH2), 4.43 (br d, J ¼ 17:0 Hz, 1H, NCH2), 4.60 (d
of AB, J ¼ 12:8 Hz, 1H, OCH2), 4.69 (d of AB,
J ¼ 12:8 Hz, 1H, OCH2), 4.84 (br s, 1H, NCH), 5.52 (t,
J ¼ 4:0 Hz, 1H, OCH), 5.88 (br s, 1H, @CH); 13C NMR
(CDCl3, 100 MHz) d 20.7 (q), 21.0 (q), 41.9 (t), 49.7 (t),
60.2 (t), 71.0 (d), 72.5 (d), 127.4(d), 134.3 (s), 170.0 (s),
170.5 (s), 175.1 (s); HRMS calcd for C12H15NO5 m=z
253.0945, found m=z 253.0948.