A. Zilinskas, J. Sereikaite / Journal of Molecular Catalysis B: Enzymatic 90 (2013) 66–69
69
4. Conclusions
Vegetables of the family Apiaceae are promising biocatalysts
for the stereoselective bioreduction and enantioseparation of
racemic bicyclo[3.3.1]nonane-2,6-dione. This methodology allows
to recover the (+)-enantiomer with a very good enantiomeric
purity. This biotechnological process is ecofriendly and cheap, the
isolation of the final product is easy and vegetables as biocata-
lysts are easy available. The method for the enantioseparation of
bicyclo[3.3.1]nonane-2,6-dione described in this work has some
advantages as compared with other enzymatic methods published
previously. First, it is more cheaper than the use of horse liver alco-
hol dehydrogenase and does not require additional experiments for
cofactor regeneration. Second, the use of vegetables is very simple
as compared with the enantioseparation of bicyclo[3.3.1]nonane-
2,6-dione by baker’s yeast.
Fig. 3. Analysis of chloroform extract using Acquity UPLC HSS T3 (100 mm × 2.1 mm
I.D., 1.8 m) column.
References
[1] H. Meerwein, W. Schurmann, Justus, Liebigs Ann. Chem. 398 (1913)
196–242.
[2] E. Butkus, Synlett 12 (12) (2001) 1827–1835.
[3] P. Camps, R. El Achab, J. Morral, D. Munoz-Torrero, A. Badia, J.E. Banos,
N.M. Vivas, X. Barril, M. Orozco, F.J. Luque, J. Med. Chem. 43 (2000)
4657–4666.
Fig. 4. Mass spectrometry analysis of peak 1 from Figs. 2 and 3.
[4] K. Murayama, T. Tanabe, Y. Ishikawa, K. Nakamura, S. Nishiyama, Tetrahedron
Lett. 50 (2009) 3194–3196.
[5] G. Mislin, M. Miesch, Eur. J. Org. Chem. 9 (2001) 1753–1759.
[6] E. Butkus, A. Zilinskas, S. Stoncius, R. Rozenbergas, M. Urbanova, V. Setnicka, P.
Bour, K. Volka, Tetrahedron: Asymmetry 13 (2002) 633–638.
[7] S. Stoncius, E. Butkus, A. Zilinskas, K. Larsson, L. Ohrstrom, U. Berg, K. Warnmark,
J. Org. Chem. 69 (2004) 5196–5203.
[8] G. Bagdziunas, E. Orentas, U. Berg, A. Zilinskas, E. Butkus, Eur. J. Org. Chem. 25
(2007) 4251–4256.
[9] E. Butkus, U. Berg, J. Chem. Res. Synop. (1993) 116–117.
[10] H. Gerlach, Helv. Chim. Acta 61 (1978) 2773–2776.
[11] G. Hoffmann, R. Wiartalla, Tetrahedron Lett. 23 (1982) 3887–3888.
[12] M. Miyazawa, M. Nobata, S. Okamura, O. Muraoka, G. Tanabe, H. Kameoka, J.
Chem. Technol. Biotechnol. 71 (1998) 281–284.
[13] J. Malinauskiene, P. Kadziauskas, A. Malinauskas, J. Kulys, Monatsh. Chem. 130
(1999) 1513–1517.
[14] E. Butkus, U. Berg, J. Malinauskiene, J. Sandstrom, J. Org. Chem. 65 (2000)
1353–1358.
Fig. 5. Mass spectrometry analysis of peak 2 from Figs. 2 and 3.
[15] C.J. Wallentin, E. Orentas, E. Butkus, K. Warnmark, Synthesis
0864–0867.
[16] K. Ishihara, H. Hamada, T. Hirata, N. Nakajima, J. Mol. Catal. B: Enzym. 23 (2003)
145–170.
[17] G.A. Cordell, T.L.G. Lemos, F.J.Q. Monte, M.C. de Mattos, J. Nat. Prod. 70 (2007)
478–492.
[18] F. Baldassare, G. Bertoni, C. Chiappe, F. Marioni, J. Mol. Catal. B: Enzym. 11 (2000)
55–58.
[19] W.K. Maczka, A. Mironowicz, Tetrahedron: Asymmetry 13 (2002)
2299–2302.
[20] J.V. Comasseto, A.T. Omori, A.L.M. Porto, L.H. Andrade, Tetrahedron Lett. 45
(2004) 473–476.
[21] J.S. Yadav, P. Thirupathi Reddy, S. Nanda, A. Bhaskar Rao, Tetrahedron: Asym-
metry 24 (2002) 3381–3385.
[22] J.S. Yadav, S. Nanda, P. Thirupathi Reddy, A. Bhaskar Rao, J. Org. Chem. 67 (2002)
3900–3903.
5 (2009)
with the prolongation of reaction time. At higher temperature this
effect is observable in a shorter time, and at 35 ◦C the optical purity
of (1) is almost the same after 24 and 72 h.
For the identification of reaction products, UPLC separation
and identification of compounds by mass spectrometry analy-
form extract (Fig. 3). Mass spectrometry analysis shows that
bicyclo[3.3.1]nonane-2,6-dione is eluted first and the reduction
second peak (Figs. 4 and 5). It is noteworthy that under the reaction
conditions used in the present work bicyclo[3.3.1]nonane-2,6-diol
was not found. It should be mentioned that (+)-1 is the remaining
enantiomer in our reaction as well as in yeast-catalyzed reduction
[15]. On contrary, a horse liver alcohol dehydrogenase catalyzes the
reduction of (+)-1 and (−)-1 is the remaining enantiomer [13].
[23] R. Lacheretz, D.G. Pardo, J. Cossy, Org. Lett. 11 (2009) 1245–1248.
[24] H. Nagaoka, Biotechnol. Progr. 20 (2004) 128–133.
[25] W.K. Maczka, A. Mironowicz, Tetrahedron: Asymmetry 15 (2004)
1965–1967.
[26] B. Bohman, L.R. Cavonius, C.R. Unelius, Green Chem. 11 (2009) 1900–1905.