Organic Letters
Letter
Su, J.; Tong, X. Chem.Eur. J. 2013, 19, 5014. (d) Zhong, L.; Savoie,
P. R.; Filatov, A. S.; Welch, J. T. Angew. Chem., Int. Ed. 2014, 53, 526.
(e) Zeng, X.; Ilies, L.; Nakamura, E. Org. Lett. 2012, 14, 954.
(7) (a) Taniguchi, N. Tetrahedron 2009, 65, 2782. (b) Taniguchi, N.
Synlett 2008, 849.
(8) (a) Liu, H.; Jiang, X. Chem.Asian J. 2013, 8, 2546. (b) Lee, C.-
F.; Liu, Y.-C.; Badsara, S. S. Chem.Asian J. 2014, 9, 706. (c) Lu, G.-
p.; Cai, C. RSC Adv. 2014, 4, 59990. (d) Lu, G.-p.; Cai, C. Adv. Synth.
Catal. 2013, 355, 1271. (e) Feng, J.; Lv, M.; Lu, G.; Cai, C. Eur. J. Org.
Chem. 2014, 5312.
Then, E-3 is formed by the elimination of iodine radical that
further reacts with 12 to produce I2 and 13.24
In summary, we have developed a one-pot protocol for
achieving bifunctionalization of alkyne to produce β-iodoalken-
yl sulfides by a radical pathway. The significance of the present
chemistry is 3-fold: (1) The research not only reveals a new
route for the generation of β-iodoalkenyl sulfides but also offers
mechanistic insights into this reaction, which may suggest new
processes for the construction of C−S bonds. (2) The
procedure is free of foul thiols, organic solvents, and metal
catalysts, making it more environmentally friendly and suitable
for large-scale operations. (3) The regio- and stereoselective
reaction proceeded with high functional group compatibility,
which should contribute to the practical synthesis of bioactive
complex alkenyl sulfides.
(9) (a) Lindstrom, U. M. Chem. Rev. 2002, 102, 2751. (b) Chanda,
̈
A.; Fokin, V. V. Chem. Rev. 2009, 109, 725. (c) Li, C.-J.; Chen, L.
Chem. Soc. Rev. 2006, 35, 68. (d) Butler, R. N.; Coyne, A. G. Chem.
Rev. 2010, 110, 6302. (e) Lu, G.-p.; Cai, C.; Lipshutz, B. H. Green
Chem. 2013, 15, 105. (f) Feng, J.; Lu, G.; Lv, M.; Cai, C. J. Org. Chem.
2014, 79, 10561.
(10) (a) Xiao, F.; Xie, H.; Liu, S.; Deng, G.-J. Adv. Synth. Catal. 2014,
356, 364. (b) Rao, H.; Wang, P.; Wang, J.; Li, Z.; Sun, X.; Cao, S. RSC
Adv. 2014, 4, 49165. (c) Liu, C.-R.; Ding, L.-H. Org. Biomol. Chem.
2015, 13, 2251. (d) Katrun, P.; Hongthong, S.; Hlekhlai, S.;
Pohmakotr, M.; Reutrakul, V.; Soorukram, D.; Jaipetch, T.;
Kuhakarn, C. RSC Adv. 2014, 4, 18933.
ASSOCIATED CONTENT
* Supporting Information
■
S
Experimental details, crystallographic data of E-6a, copies of 1H
NMR, 13C NMR spectra of all products, and copies of 2D
1H−13C HMBC of E-3p, E-4d. The Supporting Information is
(11) Wu, Q.; Zhao, D.; Qin, X.; Lan, J.; You, J. Chem. Commun. 2011,
47, 9188.
(12) (a) Yang, F.-L.; Tian, S.-K. Angew. Chem., Int. Ed. 2013, 52,
4929. (b) Kang, X.; Yan, R.; Yu, G.; Pang, X.; Liu, X.; Li, X.; Xiang, L.;
Huang, G. J. Org. Chem. 2014, 79, 10605. (c) Singh, R.; Raghuvanshi,
D. S.; Singh, K. N. Org. Lett. 2013, 15, 4202. (d) Yang, F.-L.; Wang, F.-
X.; Tian, S.-K. Chem. Commun. 2014, 50, 2111.
(13) (a) Wei, W.; Li, J.; Yang, D.; Wen, J.; Jiao, Y.; You, J.; Wang, H.
Org. Biomol. Chem. 2014, 12, 1861. (b) Taniguchi, N. Tetrahedron
2014, 70, 1984. (c) Shelke, G. M.; Rao, V. K.; Pericherla, K.; Kumar,
A. Synlett 2014, 25, 2345.
AUTHOR INFORMATION
Corresponding Authors
■
Author Contributions
‡These authors contributed equally to this paper.
(14) (a) Lu, Q.; Zhang, J.; Zhao, G.; Qi, Y.; Wang, H.; Lei, A. J. Am.
Chem. Soc. 2013, 135, 11481. (b) Handa, S.; Fennewald, J. C.;
Lipshutz, B. H. Angew. Chem., Int. Ed. 2014, 53, 3432.
Notes
(15) (a) Nair, V.; Augustine, A.; George, T. G.; Nair, L. G.
Tetrahedron Lett. 2001, 42, 6763. (b) Chen, S.; Ruan, Y.; Brown, J. D.;
The authors declare no competing financial interest.
́
Hadad, C. M.; Badjic, J. D. J. Am. Chem. Soc. 2014, 136, 17337.
ACKNOWLEDGMENTS
■
(c) Taniguchi, N. Synlett 2011, 1308.
We are grateful to Chinese National Natural Science
Foundation (21402093, 21476116), Jiangsu Province Natural
Science Foundation (BK20140776, BK20141394), and the
Center for Advanced and Technology for financial support.
(16) Dwars, T.; Paetzold, E.; Oehme, G. Angew. Chem., Int. Ed. 2005,
44, 7174.
(17) (a) Bedford, G. R.; Richardson, D. N. Nature 1966, 211, 733.
(b) Itami, K.; Yoshida, J.-i. J. Am. Chem. Soc. 2003, 125, 14670.
(18) (a) Lipshutz, B. H.; Ghorai, S.; Abela, A. R.; Moser, R.;
Nishikata, T. J. Org. Chem. 2011, 76, 4379. (b) Slack, E. D.; Gabriel, C.
M.; Lipshutz, B. H. Angew. Chem., Int. Ed. 2014, 53, 14051.
(19) Gai, R. M.; Schumacher, R. F.; Back, D. F.; Zeni, G. Org. Lett.
2012, 14, 6072.
REFERENCES
■
(1) (a) Itami, K.; Higashi, S.; Mineno, M.; Yoshida, J.-i. Org. Lett.
2005, 7, 1219. (b) Li, Q.; Dong, T.; Liu, X.; Lei, X. J. Am. Chem. Soc.
2013, 135, 4996. (c) Viglianisi, C.; Becucci, L.; Faggi, C.; Piantini, S.;
Procacci, P.; Menichetti, S. J. Org. Chem. 2013, 78, 3496. (d) Muraoka,
N.; Mineno, M.; Itami, K.; Yoshida, J.-i. J. Org. Chem. 2005, 70, 6933.
(2) (a) Lauterbach, C.; Fabian, J. Eur. J. Inorg. Chem. 1999, 1995.
(b) Hope, E. G.; Levason, W. Coord. Chem. Rev. 1993, 122, 109.
(3) (a) Di Giambattista, M.; Chinali, G.; Cocito, C. J. Antimicrob.
Chemother. 1989, 24, 485. (b) Cocito, C. Microbiol. Rev. 1979, 43, 145.
(c) Nieves, I.; Garrido, M.; Abad, J. L.; Delgado, A. Synlett 2010, 2950.
(d) Allan, R.; Duke, R.; Hambley, T.; Johnston, G.; Mewett, K.;
Quickert, N.; Tran, H. Aust. J. Chem. 1996, 49, 785.
(20) Xiao, Y.; Xu, Y.; Cheon, H.-S.; Chae, J. J. Org. Chem. 2013, 78,
5804.
(21) (a) Yang, Y.; Dong, W.; Guo, Y.; Rioux, R. M. Green Chem.
2013, 15, 3170. (b) Nakamura, I.; Sato, T.; Yamamoto, Y. Angew.
Chem., Int. Ed. 2006, 45, 4473. (c) Frei, R.; Wodrich, M. D.; Hari, D.
P.; Borin, P.-A.; Chauvier, C.; Waser. J. Am. Chem. Soc. 2014, 136,
16563.
(22) Takai, K.; Oshima, K.; Nozaki, H. Bull. Chem. Soc. Jpn. 1983, 56,
3791.
(23) (a) Katrun, P.; Mueangkaew, C.; Pohmakotr, M.; Reutrakul, V.;
Jaipetch, T.; Soorukram, D.; Kuhakarn, C. J. Org. Chem. 2014, 79,
1778. (b) Larsen, A. G.; Holm, A. H.; Roberson, M.; Daasbjerg, K. J.
Am. Chem. Soc. 2001, 123, 1723. (c) Ji, C.; Ahmida, M.; Chahma, M.;
Houmam, A. J. Am. Chem. Soc. 2006, 128, 15423.
(24) (a) Curran, D. P.; Porter, N. A.; Giese, B. Stereochemistry of
Radical Reactions; VCH Publishers: New York, 1995. (b) A Russel, G.;
Ngoviwatchai, P. Tetrahedron Lett. 1985, 26, 4975.
(4) (a) Shen, C.; Zhang, P.; Sun, Q.; Bai, S.; Hor, T. S. A.; Liu, X.
́
Chem. Soc. Rev. 2015, 44, 291. (b) Chinchilla, R.; Najera, C. Chem. Rev.
2014, 114, 1783. (c) Inami, T.; Kurahashi, T.; Matsubara, S. Chem.
Commun. 2015, 51, 1285.
(5) (a) Modha, S. G.; Mehta, V. P.; Van der Eycken, E. V. Chem. Soc.
Rev. 2013, 42, 5042. (b) Chen, J.; Tang, Z.; Qiu, R.; He, Y.; Wang, X.;
Li, N.; Yi, H.; Au, C.-T.; Yin, S.-F.; Xu, X. Org. Lett. 2015, 17, 2162−
2165.
(6) (a) Iwasaki, M.; Fujii, T.; Yamamoto, A.; Nakajima, K.; Nishihara,
Y. Chem.Asian J. 2014, 9, 58. (b) Iwasaki, M.; Fujii, T.; Nakajima,
K.; Nishihara, Y. Angew. Chem., Int. Ed. 2014, 53, 13880. (c) Chen, C.;
D
Org. Lett. XXXX, XXX, XXX−XXX