Please do not adjust margins
ChemComm
Page 4 of 4
COMMUNICATION
4
Journal Name
For selected recent examples, see: (a) J. A. Gonzalez, O. M.
K. A. Sullivan and D. P. Kjell, Org. Process Res. Dev., 2016, 20,
Ogba, G. F. Morehouse, N. Rosson, K. N. Houk, A. G. Leach, P.
178; (c) O. Baudoin, D. Guénard and F. DGOuéI:r1i0tt.1e0,3VJ9.ie/OwC7rAgCrt.CicCl0eh5O0en3mli7nB.e,
2000, 65, 9268; (d) A.-C. Carbonnelle and J. Zhu, Org. Lett.,
H.-Y. Cheong, M. D. Burke and G. C. Lloyd-Jones, Nature
Chem., 2016,
Molander, Chem. Sci., 2017,
M. Szostak, ACS Catal., 2016,
8
, 1067; (b) B. A. Vara, M. Jouffroy and G. A.
2000, 2, 3477; (e) A. Hooper, A. Zambon and C. J. Springer,
Org. Biomol. Chem., 2016, 14, 963; (f) L. Wang, X. Cui, J. Li, Y.
Wu, Z. Zhu and Y. Wu, Eur. J. Org. Chem., 2012, 595.
8
, 530-535; (c) G. Meng, S. Shi and
, 7335; (d) C. P. Seath, J. W. B.
6
Fyfe, J. J. Molloy and A. J. B. Watson, Angew. Chem. Int. Ed., 17 For recent reviews of SM cross-coupling reactions involving at
2015, 54, 9976; (e) J. W. B. Fyfe, N. J. Fazakerley and A. J. B.
Watson, Angew. Chem. Int. Ed., 2017, 56, 1249-1253; (f) S.
Handa, Y. Wang, F. Gallou, B. H. Lipshutz, Science, 2015, 349
least one sp3 coupling partner, see: (a) N. Kambe, T. Iwasakia
and J. Terao, Chem. Soc. Rev., 2011, 40, 4937; (b) R. Jana, T. P.
Pathak and M. S. Sigman, Chem. Rev. 2011, 111, 1417; (c) A.
H. Cherney, N. T. Kadunce and S. E. Reisman, Chem. Rev. 2015,
115, 9587; (d) Z. Qureshi, C. Toker and M. Lautens, Synthesis,
2016, 48; (e) C.-Y. Wang, J. Derosa and M. R. Biscoe, Chem.
,
1087; (g) L. Zhang, G. J. Lovinger, E. K. Edelstein, A. A.
Szymaniak, M. P. Chierchia and J. P. Morken, Science, 2016,
351, 70; (h) P. Cowper, Y. Jin, M. D. Turton, G. Kociok-Köhn
and S. E. Lewis, Angew. Chem. Int. Ed., 2016, 55, 2564; (i) S. N.
Sci., 2015,
Organic Synthesis (2nd Edition), 2014,
and G. A. Molander).
6, 5105; (f) G. Manolikakes, Comprehensive
Mlynarski, C. H. Schuster and J. P. Morken, Nature, 2014, 505
,
3, 392 (Eds. P. Knochel
386; (j) A. A. Thomas, H. Wang, A. F. Zahrt and A. E. Denmark,
J. Am. Chem. Soc., 2017, 139, 3805-3821.
For examples, references and discussion, see: D. M. Knapp, E.
P. Gillis and M. D. Burke, J. Am. Chem. Soc., 2009, 131, 6961.
Y. Hayashi, Chem. Sci., 2016, 7, 866-880.
(a) T. Ishiyama, M. Murata and N. Miyaura, J. Org. Chem.,
1995, 60, 7508; (b) T. Ishiyama, K. Ishida and N. Miyaura,
Tetrahedron, 2001, 57, 9813.
18 (a) K. Shimura, E. Kodama, Y. Sakagami, Y. Matsuzaki, W.
Watanabe, K. Yamataka, Y. Watanabe, Y. Ohata, S. Doi, M.
Sato, M. Kano, S. Ikeda and M. Matsuoka, J. Virol., 2008, 764-
774; (b) J. E. S. Kitchin, M. K. Pomeranz, G. Pak, K. Washenik
and J. L. Shupack, J. Am. Acad. Dermatol., 1997, 37, 445-449;
(c) R. Guardado-Mendoza, A. Prioletta, L. M. Jiménez-Ceja, A.
, 936-943; (d) F. D.
, 965-970.
19 (a) S. L. Buchwald, T. Kinzel and Y. J. Zhang, J. Am. Chem. Soc.
2010, 132, 14073; (b) D. Surry and S. L. Buchwald, Angew.
Chem., Int. Ed. 2008, 47, 6338. (c) D. Surry and S. L. Buchwald,
5
6
7
Sosale and F. Folli, Arch. Med. Sci., 2013,
Hart and P. L. Boardman, Br. Med. J., 1963, 2
9
8
9
K. L. Billingsley, T. E. Barder and S. L. Buchwald, Angew. Chem.
Int. Ed., 2007, 46, 5359.
(a) G. A. Molander, S. L. J. Trice and S. D. Dreher, J. Am. Chem.
Soc., 2010, 132, 17701; (b) G. A. Molander, S. L. J. Trice, S. M.
Kennedy, S. D. Dreher, and M. T. Tudge, J. Am. Chem. Soc.,
Chem. Sci. 2011, 2, 27.
2012, 134, 11667; (c) G. A. Molander, S. L. J. Trice and S. M. 20 Previous sp2-sp2 conditions: 1-bromonaphthylene 1a (1
Kennedy, J. Org. Chem., 2012, 77, 8678; (d) G. A. Molander, S.
L. J. Trice and B. Tschaen, Tetrahedron, 2015, 71, 5758.
10 G. A. Molander, S. L. J. Trice and S. M. Kennedy, Org. Lett.,
2012, 14, 4814.
equiv), B2(OH)4 (3 equiv.), XPhos-Pd-G2 (1 mol%), XPhos (2
mol%), propylene glycol (6 equiv.), KOAc, EtOH, 4 h, 80 °C;
then benzyl chloride 2a (1.2 equiv.), K2CO3 (aq), 80 °C, gave 3a
(29%) and 1,1'-binaphthalene (60%). Using ethyl
chloroacetate instead of benzyl chloride, gave 5b (37%) and
1,1'-binaphthalene (24%). In both cases, under our conditions,
the yields of the desired products are higher and
homocoupling was not observed. See SI for scheme. Note that
borylation with B2(OH)4 is limited in the absence of the diol
(see ref. 9d).
11 (a) C. S. Bello and J. Schmidt-Leithoff, Tetrahedron Lett., 2012,
53, 6230; (b) Y. Yamamoto, H. Matsubara, H. Yorimitsu, and
Atsuhiro Osuka, ChemCatChem, 2016, 8, 2317.
12 For recent reviews of diborane chemistry and borylation
reactions, see: (a) E. C. Neeve, S. J. Geier, I. A. I. Mkhalid, S. A.
Westcott and T. B. Marder, Chem. Rev., 2016, 116, 9091; ( b)
W. K. Chow, O. Y. Yuen, P. Y. Choy, C. M. So, C. P. Lau, W. T. 21 T. Ishiyama, M. Murata, T. Ahiko and N. Miyaura, Org. Synth.,
Wong and F. Y. Kwong, RSC Adv., 2013, , 12518; (c) I. A. I. 2004, 10, 115.
3
Mkhalid, J. H. Barnard, T. B. Marder, J. M. Murphy and J. F. 22 D. F. Aycock, Org. Process Res. Dev., 2007, 11, 156.
Hartwig, Chem. Rev., 2010, 110, 890.
23 For selected examples of SM cross-coupling with benzyl
chlorides, see: (a) L. Chahen, H. Doucet and M. Santelli,
Synlett, 2003, 11, 1668-1672; (b) G. A. Molander and M. D.
Elia, J. Org. Chem., 2006, 71, 9198-9202; (c) V. Colombel, F.
Rombouts, D. Oehlrich and G. A. Molander, J. Org. Chem.,
2012, 77, 2966-2970.
24 The procedure is as follows: B2(NMe2)4 (3 equiv.), KOAc (3
equiv.), XPhos-Pd-G2 (1 mol%), XPhos (2 mol%), propylene
glycol (6 equiv.), 2-methyl tetrahydrofuran and the aryl
13 For other recent and selected methods of aryl boron
synthesis, see: (a) M.-A. Legare, M.-A. Courtemanche, E.
Rochette and F.-G. Fontaine, Science, 2015, 349, 513; (b) A. M.
Mfuh, V. T. Nguyen, B. Chhetri, J. E. Burch, J. D. Doyle, V. N.
Nesterov, H. D. Arman and O. V. Larionov, J. Am. Chem. Soc.,
2016, 138, 8408; (c) K. Chen, S. Zhang, P. He and P. Li, Chem.
Sci., 2016, 7, 3676; (d) V. Bagutski, A. D. Grosso, J. Ayuso
Carrillo, I. A. Cade, M. D. Helm, J. R. Lawson, P. J. Singleton, S.
A. Solomon, T. Marcelli and M. J. Ingleson, J. Am. Chem. Soc.,
2013, 135, 474; (e) H. D. S. Guerrand, M. Vaultier, S. Pinet and
M. Pucheaulta, Adv. Synth. Catal., 2015, 357, 1167; (f) S. K.
Bose and T. B. Marder, Org. Lett., 2014, 16, 4562; (g) D. A.
Wilson, C. J. Wilson, C. Moldoveanu, A.-M. Resmerita, P.
Corcoran, L. M. Hoang, B. M. Rosen and V. Percec, J. Am.
Chem. Soc., 2010, 132, 1800; (h) T. Stahl, K. Mꢁther, Y. Ohki,
halide
and heated at 80 °C until the aryl halide was consumed (0.5-
4 h). K2CO3(aq) and alkyl chloride (1.2 equiv.) were added
and heating continued until conversion of the intermediate
aryl boron was complete (1-16 h).
1 (1 equiv.) was added to a nitrogen flushed vessel
2
7
K. Tatsumi and M. Oestreich, J. Am. Chem. Soc., 2013, 135
10978.
,
25 G. A. Molander, K. M. Traister and T. Barcellos, J. Org. Chem.,
2013, 78, 4123.
26 (a) A. Lei and X. Zhang, Tetrahedron Lett., 2002, 43, 2525-
2528; (b) X-x. Liu and M.-z. Deng, Chem. Commun., 2002, 622-
623; (c) L. J. Gooßen, Chem. Commun., 2001, 669-670.
14 T. Ishiyama, Y. Itoh, T. Kitano and N. Miyaura, Tetrahedron
Lett., 1997, 38, 3447.
15 A. Giroux, Y. Han and P. Prasit, Tetrahedron Lett., 1997, 38
,
3841.
16 For select examples of one-pot borylation/SM coupling
reactions in biaryl synthesis, see references 8, 9, 14, 15 and:
(a) L. Zhu, J. Duquette and M. Zhang, J. Org. Chem., 2003, 68
,
3729; (b) J. M. Merritt, M. Andiappan, M. A. Pietz, R. N. Richey,
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins