3468
E. Burgos, L. Salmon / Tetrahedron Letters 45 (2004) 3465–3469
18. Haehr, H.; Smallheer, J. Carbohydr. Res. 1978, 62, 178–
184.
19. Kirk, K. L. J. Heterocycl. Chem. 1985, 22, 57–59.
20. Pfitzner, K. E.; Moffatt, J. G. J. Am. Chem. Soc. 1937,
5661–5678.
21. Selected data for compound 5 (aldehyde form): 13C NM R
(50 MHz, CDCl3) d ¼ 200:7 (C-5), 137.9–137.2 (C-11),
128.6–128.0 (C-8, C-9, C-10), 108.4 (C-1), 86.8 (C-4), 84.7
(C-2), 82.7 (C-3), 72.2–71.8 (C-7), 55.4 (C-6); for com-
pounds 5a and 5b (hydrated forms of 5): 13C NM R
(50 MHz, CDCl3) d ¼ 137:9–137.2 (C-11ab), 128.6–128.0
(C-8ab, C-9ab, C-10ab), 107.8 and 107.5 (C-1a, C-1b), 97.3
and 97.2 (C-5b, C-5a), 87.4 and 87.2 (C-4b, C-4a), 85.7 and
84.1 (C-2b, C-2a), 83.4 and 83.8 (C-3b, C-3a), 72.2–71.8 (C-
7ab), 55.2 and 55.0 (C-6b, C-6a).
replacement of the oxygen atom for CH2 does not im-
pair significantly strong inhibition of spinach RPI. Con-
sequently, it does not seem useful in the case of RPI to
design monofluoromethylphosphonate analogues of 1,
as reported for the case of glucose-6-phosphate dehy-
drogenase inhibition by good phosphate surrogates.8
Comparison to the case of the fructose-6-phosphate
to glucose-6-phosphate isomerization catalyzed by an-
other aldose–ketose isomerase, namely phosphoglucose
isomerase (PGI), is quite interesting. Indeed, it has been
shown that such an oxygen for CH2 replacement totally
destroy the inhibition character of known strong PGI
inhibitors.35;36 In the case of the R5P to Ru5P isomeri-
zation catalyzed by spinach RPI, our study shows that
this is not the case. Therefore, synthesis of the new potent
and hydrolytically stable competitive inhibitor 2 appears
very promising for the future development of stable and
species-specific RPI inhibitors of therapeutic interest.
ꢀ
22. Le Marechal, P.; Froussios, C.; Level, M.; Azerad, R.
Carbohydr. Res. 1981, 94, 1–10.
23. Selected data for compound 8: 13C NMR (90 MHz,
CD3OD) d ¼ 138:7–138.4 (C-12, C-120), 129.4 (C-10, C-
100), 129.2 (C-11, C-110), 128.9 (C-9, C-90), 107.8 (C-1),
88.6 (C-2), 88.0 (C-3), 82.8 (d, C-4, J ¼ 18 Hz), 73.1 and
72.8 (C-8, C-80), 55.0 (C-7), 28.7 (C-5), 26.7 (d, C-6,
J ¼ 135 Hz). 31P NMR (CD3OD) d ¼ 26:3.
24. Selected data for compound 9: 13C NMR (50 MHz,
CD3OD) d ¼ 109:1 (C-1a), 102.9 (C-1b), 84.5 (d, C-4a,
J ¼ 18 Hz), 82.9 (d, C-4b, J ¼ 18 Hz), 82.3 (C-2a), 80.8 (C-
3a), 78.7 (C-2b), 77.5 (C-3b), 55.8 (C-7b), 55.6 (C-7a), 29.5
(C-5b), 27.7 (d, C-5a, J ¼ 3 Hz), 24.7 (d, C-6a, C-6b,
J ¼ 135 Hz). 31P NMR (CD3OD) d ¼ 29:2 (Pa), 28.9 (Pb).
25. Chirgwin, J. N.; Noltmann, E. A. J. Biol. Chem. 1975, 250,
7272–7276.
Acknowledgements
ꢁ
The Ministere de l’Education Nationale et de la
Recherche (E.B.) is gratefully acknowledged for finan-
cial support (2001–2004).
ꢀ
26. Hardre, R.; Bonnette, C.; Salmon, L.; Gaudemer, A.
Bioorg. Med. Chem. Lett. 1998, 8, 3435–3438.
27. Hendriks, H. E. J.; Kuster, B. F. M.; Marin, G. B.
Carbohydr. Res. 1991, 214, 71–85.
References and notes
1. Woodruff, W. W.; Wolfenden, R. J. Biol. Chem. 1979, 254,
5866–5867.
2. Burgos, E.; Salmon, L. Tetrahedron Lett. 2004, 45, 753–
756.
3. Engel, R. Chem. Rev. 1977, 77, 349–367.
4. Wiemer, D. F. Tetrahedron 1997, 53, 16609–16644.
5. Le Camus, C.; Badet-Denisot, M.-A.; Badet, B. Tetrahe-
dron Lett. 1998, 39, 2571–2572.
6. Arth, H.-L.; Fessner, W.-D. Carbohydr. Res. 1998, 305,
313–321.
7. Hanessian, S.; Rogel, O. J. Org. Chem. 2000, 65, 2667–
2674.
8. Berkowitz, D. B.; Bose, M.; Pfannenstiel, T. J.; Doukov,
T. J. Org. Chem. 2000, 65, 4498–4508.
9. Pasti, C.; Rinaldi, E.; Cervellati, C.; Dallocchio, F.;
28. El-Subbagh, H. I.; Racha, S.; Abushanab, E.; Panzica, R.
P. J. Org. Chem. 1996, 61, 890–894.
28
29. Selected data for compound 11: ½aꢀ þ10.1 (c 0.97,
D
CH3OH). IR mmax (cmÀ1) (KBr): 3394 (OH), 1743 (CO),
1034 (OC, PO). 1H NMR (250 MHz, CDCl3) d ¼ 4:21–
4.19 (d, 1H, H-1, J ¼ 4 Hz), 3.92–3.82 (m, 1H, H-2), 3.79
(s, 3H, H-6), 3.72 (d, 6H, H-5, J ¼ 11 Hz), 2.03–1.75 (m,
4H, H-3, H-4). 13C NMR (90 MHz, CDCl3) d ¼ 173:2 (C-
1), 74.6 (C-2), 73.1 (d, C-3, J ¼ 16 Hz), 52.8 (d, C-6,
J ¼ 6 Hz), 52.5 (C-7), 25.0 (d, C-4, J ¼ 3 Hz), 20.8 (d, C-5,
J ¼ 142 Hz). 31P NMR (CDCl3) d ¼ 35:9. MS (positive-
ion electrospray): m=z (%) 197 [MÀ2OCH3þ3Hþ] (6), 257
[MþHþ] (13), 279 [MþNaþ] (100). HRMS (positive-ion
electrospray): calcd for C8H17O7PNa (MþNaþ) 279.0610,
found 279.0608.
28
ꢀ
Hardre, R.; Salmon, L.; Hanau, S. Bioorg. Med. Chem.
2003, 11, 1207–1214.
30. Selected data for compound 12: ½aꢀ þ2.8 (c 1.20,
D
CH3OH). IR mmax (cmÀ1) (KBr): 3416 (OH), 1739 (CO),
1028 (OC, PO). 1H NMR (250 MHz, CDCl3) d ¼ 4:26–
4.20 (m, 1H, H-1), 3.76 (d, 6H, H-4, J ¼ 7 Hz), 3.70 (s, 3H,
H-5), 2.20–1.84 (m, 4H, H-2, H-3). 13C NMR (90 MHz,
CDCl3) d ¼ 174:8 (C-1), 70.3 (d, C-2, J ¼ 17 Hz), 52.8 (d,
C-5, J ¼ 7 Hz), 52.7 (C-6), 27.5 (d, C-3, J ¼ 4 Hz), 20.4 (d,
C-4, J ¼ 142 Hz). 31P NMR (CDCl3) d ¼ 34:8. MS
(positive-ion electrospray): m=z (%) 167 [MÀ2OCH3 þ
3Hþ] (17), 227 [MþHþ] (10), 249 [MþNaþ] (77), 293
(100). HRMS (positive-ion electrospray): calcd for
10. Hirsch, G.; Grosdemange-Billiard, C.; Trisch, D.; Roh-
mer, M. Tetrahedron Lett. 2004, 45, 519–521.
11. Guanti, G.; Banfi, L.; Zannetti, M. T. Tetrahedron Lett.
2000, 41, 3181–3185.
12. Dardonville, C.; Rinaldi, E.; Hanau, S.; Barrett, M. P.;
Brun, R.; Gilbert, I. H. Bioorg. Med. Chem. 2003, 11, 31–
42.
13. Le Camus, C.; Chassagne, A.; Badet-Denisot, M.-A.;
Badet, B. Tetrahedron Lett. 1998, 39, 287–288.
14. Le Camus, C. Ph.D. Thesis, Universite Rene Descartes,
C7H15O6PNa (MþNaþ) 249.0504, found 249.0506.
ꢀ
ꢀ
28
Paris (France), 1998.
15. Unger, F. M.; Stix, D.; Moderndorfer, E.; Hammersch-
31. Selected data for compound 2: ½aꢀ þ8.5 (c 1.09, H2O). IR
D
mmax (cmÀ1) (KBr): 3406 (OH), 1682 (CO), 1027 (OC, PO).
1H NMR (250 MHz, D2O) d ¼ 4:23 (d, 1H, H-1,
J ¼ 4 Hz), 3.90–3.80 (m, 1H, H-2), 1.81–1.54 (m, 4H,
H-3, H-4). 13C NMR (50 MHz, D2O) d ¼ 176:9 (C-1), 74.8
(C-2), 74.0 (d, C-3, J ¼ 18 Hz), 26.3 (C-4), 25.0 (d, C-5,
€
mid, F. Carbohydr. Res. 1978, 67, 349–356.
16. Zinner, H.; Braudner, H.; Reubarz, G. Chem. Ber. 1956, 3,
800–813.
17. Green, J. W.; Pacsu, E. J. Am. Chem. Soc. 1937, 59, 1205–
1210.
J ¼ 133 Hz). 31P NM R (DO) d ¼ 28:9.
2